
Porting the QEMU virtualization software to MINIX 3

Master's thesis in Computer Science

Erik van der Kouwe

Student number 1397273

erik@erisma.nl

Vrije Universiteit Amsterdam

Faculty of Sciences

Department of Mathematics and Computer Science

Supervised by dr. Andrew S. Tanenbaum

Second reader: dr. Herbert Bos

12 August 2009

Abstract
The MINIX 3 operating system aims to make computers more reliable and more secure by
keeping privileged code small and simple. Unfortunately, at the moment only few major
programs have been ported to MINIX. In particular, no virtualization software is available. By
isolating software environments from each other, virtualization aids in software development
and provides an additional way to achieve reliability and security. It is unclear whether
virtualization software can run efficiently within the constraints of MINIX' microkernel
design. To determine whether MINIX is capable of running virtualization software, I have
ported QEMU to it. QEMU provides full system virtualization, aiming in particular at
portability and speed. I find that QEMU can be ported to MINIX, but that this requires a
number of changes to be made to both programs. Allowing QEMU to run mainly involves
adding standardized POSIX functions that were previously missing in MINIX. These
additions do not conflict with MINIX' design principles and their availability makes porting
other software easier. A list of recommendations is provided that could further simplify
porting software to MINIX.

Besides just porting QEMU, I also investigate what performance bottlenecks it experiences
on MINIX. Several areas are found where MINIX does not perform as well as Linux. The
causes for these differences are investigated. For practical usage, the difference is found to be
small. Most bottlenecks can be resolved through minor changes and only one of the minor
issues appears to be due to the microkernel design.

This thesis does not only provide a report on my research about QEMU on MINIX, but also
aims to provide information to those who intend to port software to MINIX. It contains a
detailed report on the issues encountered while porting QEMU, so that others may avoid the
pitfalls I found. As such, it can serve as a manual for porting projects.

2

Brief table of Contents
1 - Introduction...8
2 - Virtualization ...13
3 - Issues encountered and changes made ..31
4 - How to use QEMU on MINIX ..73
5 - Performance measurements ...81
6 - Conclusions ..101
Bibliography...102
Appendix A - Contents of the CD-ROM ...104
Appendix B - Performance measurements ...106

3

Detailed table of Contents
1 - Introduction...8

1.1 - Context ...8
1.2 - Problem statement ..8
1.3 - MINIX ..9
1.4 - QEMU...11
1.5 - Structure of this thesis ...12

2 - Virtualization ...13
2.1 - Introduction ..13

What is virtualization?...13
Why are virtual machines useful?..13
Theoretical background...14

2.2 - Possible approaches ...16
Dynamic Binary Translation..16
Paravirtualization...18
Previrtualization..19
Operating system level partitioning...20
Application virtual machine...20
Hardware supported..21

2.3 - QEMU implementation ..22
User-level memory management unit..23
Code generation...24
No kernel-level components ..29

3 - Issues encountered and changes made ..31
3.1 - General...31
3.2 - Changes made to MINIX ...33

Addition of the setitimer function..33
Implementation of the pread64 and pwrite64 functions..36
Signal handling bug...38
Use of the select function with the /dev/eth device..38

3.3 - Porting QEMU..39
General remarks on porting software to MINIX..39
Changes related to compilation..44
Changes related to code generation..47
Changes related to networking...48
Miscellaneous changes..49
Missing functionality...51

3.4 - Features added in QEMU for MINIX ...53
Curses support...53
Memory allocation recommendation...53
Networking..54
Opcode histograms...59
Running deterministically..60
Simple profiling of QEMU..62

3.5 - libSDL...62

4

The configure and configure.in files...63
Changes to SDL files..63
Build file...64

3.6 - Debugging QEMU ..64
Causing crashes to occur early..65
Lack of double and triple fault...66
Logging system calls..66
Making the core file more readable..67
Parallel testing...68
Profiling supported by GCC..68
Using MINIX' information server...69

3.7 - Testing QEMU..70
3.8 - Discussion...71

4 - How to use QEMU on MINIX ..73
4.1 - Installing QEMU on MINIX ..73

What has to be done..73
Installing using the installation script..73
Installing manually..75

4.2 - Running QEMU on MINIX ..78
Running the pre-made disk images..78
Setting up a new virtual machine...79

5 - Performance measurements ...81
5.1 - Methodology ..81

Measuring QEMU performance..81
Measuring impact of the HZ constant...84

5.2 - Results ...86
Performance of MINIX as a guest operating system..86
Performance of QEMU itself..89
Performance of MINIX as a host operating system..93
Impact of the deterministic mode..95
Recursive emulation..96
Impact of the HZ constant..97

5.3 - Discussion..99
6 - Conclusions ..101
Bibliography...102
Appendix A - Contents of the CD-ROM ...104
Appendix B - Performance measurements ...106

B.1 - Benchmarking guest operating systems running on QEMU..106
B.2 - Impact of the LLDT instruction..108

Changes made to MINIX...108
Performance impact...109

B.3 - Benchmarking the impact of the clock frequency..109

5

Table of figures
Figure 1: Structure of the MINIX 3 operating system, each box denoting a process isolated
from the other processes; source: [21]..10
Figure 2: The virtual machine manager as a regular user process ..13
Figure 3: Main loop for binary dynamic translation ...17
Figure 4: Main loop for paravirtualization ..18
Figure 5: Main loop for hardware-supported virtualization ..22
Figure 6: MMU operation and terminology on x86 ...23
Figure 7: Function call with relative displacement on x86 ...25
Figure 8: Steps in the compilation of QEMU using the Dyngen tool26
Figure 9: Translation of a x86 function using intermediate code ..27
Figure 10: Processes involved in network emulation using qemu-vswitch................................57
Figure 11: qemu-vswitch routing an outgoing DHCP discover packet..57
Figure 12: qemu-vswitch routing an incoming DHCP offer packet..58
Figure 13: Interaction between processes involved in measuring performance........................82
Figure 14: MINIX vs. Linux as a guest platform...87
Figure 15: Slow-down caused by emulation...91
Figure 16: Amount of data sent in the io_network_throughput benchmark.............................92
Figure 17: MINIX vs. Linux as a host platform...94
Figure 18: Slow-down of deterministic mode compared to default mode on MINIX...............96
Figure 19: Relationship between overhead caused by the operating system and timer
frequency, on MINIX patched to have a variable clock frequency...98

6

Table of tables
Table 1: Possible schedule when two instances of QEMU read the same disk...........................37
Table 2: Advantages and disadvantages of several virtual networking approaches supported by
QEMU on MINIX ...54
Table 3: Operations used by the guest to control the opcode histogram feature......................60
Table 4: Operations used by the guest to read the host time...62
Table 5: Benchmarks performed by the Benchmark program..83
Table 6: Performance of recursive emulation; time to recompile the MINIX image in seconds
...97
Table 7: Average run-times (in seconds) for each benchmark on each configuration.............107
Table 8: Averaged performance measurements of various operating systems at various clock
frequencies...110

7

1 - Introduction

1.1 - Context
MINIX 3 is a free software operating system which was developed to show that operating
systems can be made more reliable, more secure, smaller and more understandable. It
achieves this by keeping the kernel, the part of the operating system that directly controls the
hardware, as small and simple as possible. This reduces the likelihood of bugs being able to
bring down the entire system. All other functionality is provided in the context of separate
processes called 'servers'. Since the kernel isolates processes from each other, bugs in servers
can do only limited damage. If something goes wrong, they can simply be restarted. The
operating system itself keeps on running and users of the system can continue working
without disruption.

Currently, although MINIX 3 is fully functional, only few major applications and hardware
drivers have been ported to it. Sufficient availability of ported software is important both
scientifically and practically. Scientifically, such software serves to test the ability and
performance of a reliable microkernel operating system. By providing additional means to
test MINIX 3, they point towards possible improvements. Practically, a lack of applications
and hardware drivers holds people back from switching to MINIX 3 for everyday use. Since
MINIX 3 is an open source project, it would greatly benefit from the contributions that new
users can make. Software that assists in software development is especially important in this
way, since it attracts exactly the group of people that is most important for further improving
MINIX 3.

QEMU is a free software virtualization program. It emulates computer hardware to allow
one operating system to run as a process inside another. This is useful for a number of
purposes, including software testing and operating system development. For example, it
allows one to easily restore the operating system to a previous state after a change that worked
out badly, makes it possible to have the equivalent of a core dump that is useful for kernel
debugging and it allows one to test programs on multiple operating systems without
rebooting. Moreover, it allows one to run applications even if they have not (yet) been ported
to host operating system. In the case of MINIX, it could for example be used to run a
graphical browser, something which MINIX itself currently lacks. No general purpose
virtualization program is currently available in MINIX 3, so if QEMU were to be ported that
would benefit further development on MINIX 3.

1.2 - Problem statement
My aim is to port the QEMU virtualization software to the MINIX 3 operating system to
evaluate what difficulties are encountered and what level of functionality and performance
can be achieved. It is not clear in advance that this can be done, since MINIX 3 lacks some
features that are common in other operating systems. Examples of such missing features are
virtual memory and a high-resolution timer. It is also better secured against self-modifying
code, which may be an issue because code generation is a core means of speeding up
emulation. Moreover, microkernel systems sacrifice performance for reliability and security.

8

Speed is an important factor determining whether a virtual machine is useful or not. Hence,
QEMU provides an opportunity to find performance bottlenecks.

One additional goal of this project is to provide a manual for porting complex software to
MINIX. Such a manual is currently lacking and would encourage others to get started with
porting. In particular, the Java Virtual Machine and the MONO framework use techniques
similar to those in QEMU to be able to run Java and .NET code across platforms without
recompilation.

This research is driven by the research question 'Can MINIX 3 run virtualization software?'
This question gives rise to a number of sub-questions:

• What issues does one encounter when porting complex software to MINIX 3?

• Is it necessary to change MINIX 3 to be able to run QEMU?

• Is the microkernel design an obstacle for performance?

• Can bottlenecks be solved within this design?

• Is QEMU on MINIX 3 usable in practice?

The primary goal of this master's thesis is to provide answers to these questions based on
porting QEMU to MINIX 3 and testing it. Besides providing just answers, this thesis is meant
to serve as a manual for porting software to MINIX 3 and explain how QEMU can be used in
MINIX 3. Moreover, it provides a list of areas where MINIX' performance could potentially be
improved and makes virtualization available on the MINIX 3 operating system.

1.3 - MINIX
MINIX is an operating system created from scratch, originally serving as an educational tool
to teach students of computer science about operating systems. It is suitable for this purpose
because it is small and simple, containing no unnecessary detail and being easily changed
and recompiled. With the latest major version, MINIX 3, this scope has been expanded.
Besides the original educational goal, it now strives to combine a small footprint with high
reliability, making it ideal for embedded applications [20].

Reliability is achieved in MINIX by adopting the microkernel model, in which operating
system code runs with as few privileges as possible. Only those parts that need to be in full
control of the hardware are placed in the kernel, while many operating system services and
drivers are run as separate server processes. These processes have few privileges, so that they
are unlikely to bring down the system if they crash. Moreover, it is possible to restart these
servers whenever they cease to function properly. The microkernel model can be contrasted
against the monolithic model, in which most or all of the operating system services run at the
highest privilege level. In such a system overhead from communication between the various
parts of the operating system is smaller, but if any of these parts malfunctions then the
operating system irreversibly becomes unstable and must be rebooted. The occurrence of
such bugs becomes more likely as the system becomes more complex; all software contains
bugs, with the number of bugs generally proportional to the complexity. As complexity is
typically measured as the number of lines of source code [3], reducing the size of an operating
system kernel is highly desirable.

9

The structure of MINIX 3 is shown in Figure 1 and described at length in [21]. In this
drawing, privileges increase from top to bottom. The kernel layer has full control over the
hardware. It cannot formally be called a process as it is not scheduled, but is rather called by
the hardware through interrupts whenever its services are needed. Whereas monolithic
operating systems run process management, file systems and drivers at this level, MINIX only
implements the bare minimum. This includes operations such as task switching and
hardware access involving memory, input and output and interrupt handlers. The system
task, which also runs in kernel mode, makes these facilities available to the higher levels. By
making system calls, other processes can request that the kernel perform actions for them if
they have sufficient privileges. Even device drivers cannot directly access the hardware, they
need to be granted access and have to go through the kernel. The only exception is the clock
driver, which is part of the kernel due to its time critical nature and the fact that this service is
also needed for scheduling processes. It should be noted that this does not increase the size
of the kernel by much as it is considerably smaller than most other drivers.

None of the layers outside the kernel has direct access to the hardware. They do differ,
however, in the kinds of system calls that they are allowed to make. Device drivers are allowed
many privileges, in particular regarding hardware access. Although they cannot access the
hardware directly, they have system calls at their disposal to do tasks such as moving blocks of
memory around, performing device IO and receiving interrupts. Through this mechanism,
implementing drivers for all kinds of devices is possible while the chances of driver crashes
causing serious damage is lower than on other systems.

Server processes can also call the kernel and use the drivers at the lower level, but they are
allowed to use only those calls that they really need to do their job. In particular, servers in
contrast with device drivers have little hardware access. The servers implement high-level
abstractions that are needed by user processes to be able to use the system, for example
though the POSIX API. The same services provided by the process manager, file system server
and network server are typically performed by kernel-level components in other operating
systems. One server that is specific to the MINIX approach to reliability is the reincarnation
server. This server can restart drivers and services when they malfunction, so that ideally the
user could continue working despite driver crashes. Although this is currently more theory
than practice, the MINIX 3 team is working hard to make it reality.

10

Figure 1: Structure of the MINIX 3 operating system, each box denoting a process
isolated from the other processes; source: [21].

User processes, which form the top layer, do not have any privileges to call the kernel or
drivers directly. Instead, they use the services provided by the servers, which in turn call the
drivers or the kernel whenever needed. A typical request, such as reading a file using the read
POSIX call, is sent by the kernel to the appropriate server, in this case the file system. This
server validates whether the process is allowed to perform the operation. Unlike the user
process from which the request originated, the file system server is allowed to communicate
directly with device drivers. If the call is accepted, it requests the proper disk block from the
disk driver. The disk driver, in turn, is allowed to ask the kernel to send IO requests to the disk
drive and can receive notifications whenever the data has been read. By using this approach,
each component gets only the privileges that are really needed and the low-level high-
privilege parts are kept as simple as possible.

Because MINIX is a microkernel system in which operating system services run as separate
processes, inter-process communication is an important aspect of its design. Each of the steps
in the previous example requires communication between two processes. MINIX isolates
processes from each other, only allowing communication by means of synchronous message
passing. Whenever a message is sent, it is also checked whether the source process is allowed
to sent to the specified destination process. This is an additional protection to make sure that
user processes cannot access drivers and the kernel directly. By using only synchronous
message passing, inter-process communication is kept simple. All communication is done
through the same mechanism and there is no need for the operating system to handle
concurrency or keep queues; a process simply blocks until its message is delivered.

Why is this simple microkernel operating system interesting from a scientific perspective
and as a host platform for QEMU in particular? First, it demonstrates that microkernel
operating systems can work in practice and it allows for experiments to reveal their
capabilities and their performance. Since virtual machine emulation is demanding, having
QEMU run on it provides an additional test for its capabilities as well as a new way to measure
its performance. Moreover, it serves as an example of how modularity, reliability and self-
healing can be achieved in operating systems. Virtual machines are used extensively in server
farms to achieve high availability and a highly reliable operating system would provide a good
basis to reach this goal.

1.4 - QEMU
QEMU is an open source virtualization program which aims to be portable, fast and which
can be used for general purpose full system emulation [5]. Although some competitors, such
as VMWare Workstation and Microsoft Virtual Server, can provide faster emulation, their
source code is not available so that it is not possible to port them to MINIX. Xen is an open
source alternative, but it cannot run within a host operating system and, unless hardware
support is available, supports only guest operating systems which have been modified to run
on it. For this reason, it is not general purpose like the other programs mentioned. Another
well-known open source CPU emulation program is Bochs, but this program is considerably
slower than QEMU because it does not use dynamic code generation. The difference between
Bochs and QEMU is similar to the difference between an interpreter and a compiler; the
former has more control over the program and is can therefore provide useful debugging
features, but this comes at a considerable performance cost compared to the latter. It should
be noted that some hardware emulation code from Bochs has been used in QEMU, so the

11

programs are not entirely unrelated. Given the goal of testing MINIX' capabilities and the aim
to give MINIX users access to general purpose full system emulation with performance that is
acceptable for practical use, QEMU is the most suitable choice.

1.5 - Structure of this thesis
Besides answering the research questions, this thesis is also intended to serve as a guide for
those who intend to port software to MINIX as well as provide instructions to those who
intend to use QEMU on MINIX. Hence, some reading audiences may find some chapters and
sections more useful than others.

The next chapter introduces the topic of virtualization from both a theoretical perspective
and from the more practical viewpoint of its implementation in QEMU. The former part is
based on my bachelor's thesis and provides an overview of the issues encountered in
virtualization as well as the various approaches that are available to address them. The latter
part elaborates on the specific design choices made in QEMU with regard to these issues.

Chapter 3 focuses on the changes that I needed to make to both QEMU and MINIX and the
ways in which I addressed the issues I encountered. It is practical in nature and I invite those
who intend to port software to MINIX to read it to allow them to avoid the obstacles that I
encountered. This chapter also considers the ways in which QEMU is different on MINIX
than on other platforms. Reading the section on this topic is advisable for those who wish to
use the more advanced features of QEMU in MINIX.

For those who merely want to try QEMU on MINIX, I would recommend chapter 4. This
chapter provides instructions to install, compile and run QEMU. As such it has some overlap
with the documentation provided for QEMU, but focusses in particular on those issues that
are specific to MINIX.

In chapter 5, I discuss how I have tested QEMU's performance and present the outcomes
from those measurements. Important differences with Linux are discussed, providing an
overview of which bottlenecks MINIX has and how they could be addressed. Additionally, I
present the results of tests I performed to justify some design choices I have made in porting
QEMU.

The final chapter concludes the thesis by summarizing the main findings. In doing so, the
research questions are answered and the main consequences of the answers are discussed.

12

2 - Virtualization

2.1 - Introduction

What is virtualization?

Virtualization is a technique which allows one to partition a computer system in multiple
systems that are isolated from each other. Each of these provides a software environment
which is very similar to that of a physical computer. Such an environment is called a virtual
machine (VM).

One will typically want to install an operating system on a virtual machine to be able to run
applications. This guest operating system assumes that it has complete control of the
computer, and it will attempt to access it's hardware. This cannot be allowed, since the
hardware is shared with guest operating systems running on other virtual machines. A
program called virtual machine monitor (VMM) or hypervisor is needed to make sure all
resources are shared properly.

The role of a VMM dividing resources between operating systems differs from that of a
kernel dividing resources between applications. The main difference is that the latter typically
provides an abstraction of physical devices, while the former does not change the abstraction
level [19]. The VMM should present a faithful low-level interface to virtualized hardware.

The VMM itself may have full hardware access, but it can also can be a normal application
running on an operating system. In this case the operating system on which the VMM runs is
called the host operating system. This situation is shown in Figure 2.

Why are virtual machines useful?

Server farms

One can use virtual machines to run multiple isolated virtual servers on a single physical
server. Virtualization is more efficient despite its overhead because servers have to be
sufficiently powerful for peak loads, but experience much lower load levels most of the time.
By consolidating many servers on one machine, variation in the overall load level is reduced.
Additionally, some services cannot normally be combined on a single server for security
reasons; it might be a bad idea to put one's critical services such as the file server or mail

13

Figure 2: The virtual machine manager as a regular user process

Virtual Machine Manager

Guest operating system
Emulated hardware

Host operating system

Guest user
process

Guest user
process

Host user
process

Host hardware

Host user
process

Virtual Machine Manager

Guest operating system
Emulated hardware

Guest user
process

Guest user
process

server together on one machine with a web server that is more vulnerable. Because of the
isolation provided by virtualization, they can be put on the same physical machine so
hardware can be used more efficiently and costs can be decreased.

For an internet hosting company virtualization can be used to allow customers full access
to a virtual server without endangering other servers on the same physical machine. This way,
customers have a large degree of freedom at relatively low cost.

Another advantage of using virtual servers is the fact that they can easily be moved to other
computers. Typically the interface to the virtualized hardware does not depend on the actual
hardware, so the guest operating system does not even notice the move. This can be used to
minimise downtime after restoring a backup to different hardware. This makes maintenance
easier and increases availability.

Software development

Virtual machines have their uses in software development as well. They provide a way to
switch between different (versions of) operating systems easily and quickly. This is very useful
for testing and debugging software on multiple platforms.

VMMs may also allow the user to make snapshots of virtual machines. This means one can
test something and revert the machine to it's original state afterwards. This is again very
useful for testing and debugging.

Yet another application for development is to debug low-level software, such as kernels. A
VMM could provide a kernel debugger with much information about what is going on. It also
makes recovery from crashes easier, since one can simply use a previous snapshot.

Untrusted software

Another application which is especially useful nowadays is the ability to run untrusted
software in an environment where it can do no damage. Examples are running potential
malware downloaded from the Internet and opening suspicious e-mail attachments. If the
VMM is secure enough, there is no way for malware and viruses to infect the physical
machine or other virtual machines.

Security research

Finally virtual machines provide an easy way to build secure “honeypots.” These are
unprotected machines which are connected to the Internet. The purpose is to get information
about new methods to exploit flaws in operating systems and applications. By using virtual
honeypots, these exploits are less likely to do damage to the system itself. This may make
investigation and recovery easier. They also allow having multiple honeypots with different
(versions of) operating systems running simultaneously.

Theoretical background

Possibility of efficient virtualization

Popek and Goldberg [17] investigated sufficient conditions which allow a computer
architecture to support virtual machines. They defined a virtual machine as “an efficient,

14

isolated duplicate of the real machine.” Although their research was motivated by the
question why IBM 360/67 could support virtual machines while DEC PDP-10 could not, their
criterion still applies to modern architectures.

Central to Popek and Goldberg's theorem is the distinction between supervisor and user
modes. The supervisor mode allows complete access to the machine and is typically used by
operating system kernels and VMMs, while the user mode is more limited and is typically
used by applications. They further define a trap operation, which places the processor in a
stored state (typically the supervisor mode) while saving the current state.

Popek and Goldberg consider some properties that individual instructions can have:

● A privileged instruction performs a trap operation in user mode, but does not trap in
supervisor mode;

● A control sensitive instruction can change the operating mode or virtual memory
mappings;

● A behaviour sensitive instruction executes in different ways depending on operating
mode or virtual memory mappings;

● A sensitive instruction is control sensitive and/or behaviour sensitive.

Having defined these terms, one can state the following theorem: “A virtual machine monitor
may be constructed if the set of sensitive instructions for the computer is a subset of the set of
privileged instructions.” The virtual machine is constructed by letting the VMM operate in
supervisor mode and the virtual machine in user mode. This way the monitor can emulate
sensitive instructions, since it is notified by a trap operation. nonsensitive instructions can
safely be executed directly.

Virtualizability of IA-32

The IA-32 architecture is very widely used in personal computers and servers which run
Windows, Linux or, more recently, Mac OS. It is also the only architecture currently
supported by current versions of MINIX 3. It evolved from (and is still compatible with) the
instruction set architectures used by the 8086 and it's successors and is therefore also
commonly known as x86. The Pentium D and Core Duo chips from Intel and Opteron and
Athlon 64 X2 from AMD are examples of modern implementations of IA-32.

IA-32 defines four security rings numbered 0 through 3. Ring 0 can be considered the
supervisor mode, while the other rings correspond with the user mode. The architecture
defines privileged instructions which, when executed in user mode, trap by calling an
interrupt handler in ring 0. Virtual memory is implemented through segmentation and
paging. Segments are identified by 16-bit segment selectors which contain the number of the
least privileged ring allowed to access them. The operating system's perspective of IA-32 is
described at length in [8].

Robin and Irvine [18] have investigated the IA-32 architecture and have found many
instructions that are sensitive, but not privileged. An example is the push cs instruction,
which pushes onto the stack the selector for the segment containing the currently executing
code. Since this segment selector contains the number of the current security ring, this
instruction is behaviour sensitive.

15

The lack of native virtual machine support has lead to the use of many different techniques
on the IA-32 platform. The approaches I mention are applicable to other architectures, but I
will focus on IA-32. I will also discuss two approaches which are highly similar to virtual
machines and provide the same advantages, but which are not virtual machines according to
the definition I presented before.

Recently Intel has added true virtualization support to their newest IA-32 chips by
including an extension instruction set called “Virtual Machine Extensions.” AMD has also
introduced a similar (but incompatible) instruction set extension to achieve the same goal. I
will discuss this technology as well.

2.2 - Possible approaches

Dynamic Binary Translation

Dynamic binary translation can be seen as an advanced way to do emulation. In case of pure
emulation, the host software implements the instructions that are available on the CPU. This
allows it to interpret the instructions supplied by the guest. As such, emulation is the most
obvious approach to build virtual machines on hardware platforms that have no native
support for them. Bochs is an example of a program which emulates IA-32 CPUs.

Unfortunately pure emulation provides very poor performance, since executing a single
guest instruction typically takes many instructions on the host machine. This lack of
efficiency means that an emulated machine does not satisfy the Popek and Goldberg
definition for a virtual machine. As such, I will not consider emulation separately.

Dynamic binary translation overcomes the performance limitations of emulation by
translating the instruction stream to host instructions which can be executed natively. In this
step sensitive instructions are replaced with calls to the VMM. The translated instruction
stream can be cached. Because of this, only a small part of the time is spent on translation.
The main loop of a pure dynamic binary translation VMM is shown in Figure 3.

Ung and Cifuentes [24] provide details on how one can implement binary translation.

If the host has the same architecture as the guest and the VMM has access to kernel mode,
dynamic binary translation can be sped up by directly executing code in some cases. When
running in kernel mode, the VMM is able to reproduce the environment the virtual machine
runs in on the physical machine. When running guest code in user mode, interrupts are
raised whenever the guest attempts to access hardware, allowing the VMM to intervene and
emulate virtual hardware instead.

16

Unfortunately this form of emulation is not and cannot be perfect since Robin and Irvine
[18] found that the IA-32 architecture is not virtualizable. Kernel mode guest code can easily
find that it is really running in user mode. This is likely to cause it to fail and at least allows it
to detect the VMM. For this reason kernel code generally still has to be emulated, causing
direct execution to be alternated with binary dynamic translation. Even user level guest code
can detect that it is not running on the bare hardware. On IA-32 the sidt instruction, which
allows one to detect the location and size of the interrupt table in physical RAM, is
completely unprotected. This allows applications to find out where the VMM stores the
interrupt table, which is likely not the same location used by the guest operating system. This
instruction is useless for user mode code and hence will not cause it to fail, but allows it to
detect emulation. For some purposes of virtualization this is unacceptable, for example in the
case of virtual honeypots.

Dynamic binary translation is widely used. Market leader VMWare created several VMMs
which are based on this technique: VMWare Workstation runs as an application on Windows
and Linux and VMWare ESX server runs without an operating system. The architecture of the
virtualization software is described in [26]. For the server version, this software runs on a
proprietary microkernel operating system [25].

Another example of a VMM which uses dynamic binary translation is QEMU. This program
provides more insight in the implementation of this technique, since it is open source. Its
author describes the internals in [4]. QEMU translates CPU instructions to C code, which is
compiled using the GCC compiler. This results in very good portability, since GCC has been
ported to many platforms. Translation happens in blocks ending at the next potential jump or

17

Figure 3: Main loop for binary dynamic
translation

Execute translated block(s) directly
in user mode

Find in cache translated block
starting at instruction pointer

Translate code until next branch
and add to cache

Handle interrupt

Find out whether jump targets have
been translated and link blocks

Update
instruction pointer

Found Not found

End reached Interrupt

important change in CPU state (such as changing mode of operation). These blocks are
stored in a cache. Pages containing translated code are marked read-only, and by handling
the resulting protection faults QEMU can invalidate the cache when code changes.

Other examples of virtualization products which use dynamic binary translation include
Microsoft VirtualPC and Virtual Server, Parallels Workstation and Serenity Virtual Station.

With dynamic binary translation much of the code is translated only once and can be
executed natively. I therefore expect the chaining of translated blocks to have the most
important impact on performance. Benchmarks show [1] that a highly optimised binary
translation VMM such as VMWare Workstation can reach good speeds, but worse results
should be expected in branch-intensive or self-modifying code.

The host kernel should ensure that the guest code is executed in a user mode ring, typically
ring 3. All of this code is generated by the VMM. This provides the additional guarantee that
the guest cannot attempt to call the host kernel directly. This results in double protection,
making it unlikely that a single bug in either the kernel or the VMM compromises the
isolation. As such, dynamic binary translation can be very robust.

Binary translation VMMs can be highly portable. In principle, the guest operating system
does not matter at all, as long as the VMM faithfully implements all hardware interfaces it
requires. As QEMU shows, even emulation of different CPU architectures is achieved
reasonably easily, although direct execution is not possible in this case.

A binary translation VMM can run either as an unprivileged application within an
operating system or with full control without operating system. This section has discussed
examples of both.

Paravirtualization

The approach I described before tries to mimic the environment in which the operating
system is running on a real machine. For this reason it is also called full system virtualization.
More efficient virtualization may be possible if the VMM cooperates with the guest operating
system. This approach is called paravirtualization.

Xen is an example of a virtual machine monitor which uses paravirtualization. It requires
that guest operating systems be changed to make their kernel run in ring 1 instead of ring 0.
The ported kernel uses “hypercalls” to replace sensitive instructions. This is done by placing
parameters in registers and then calling an interrupt handler. Xen itself runs in ring 0. The
approach is shown in Figure 4.

Xen's creators ported Windows XP, Linux and BSD to run on Xen [2], although Windows
for Xen is not publicly available. MINIX for Xen is also available, and the document [13]

18

Figure 4: Main loop for
paravirtualization

Execute code directly in user mode

Handle interrupt, which
may be a hypercall

Interrupt

describing the porting process shows how a simple microkernel operating system can be
ported to Xen.

Another example of paravirtualization is User Mode Linux. This is a modified version of the
Linux kernel which is capable of running as a user-mode application inside Linux.

Paravirtualization can be expected to be very fast, since all code can be executed without
runtime translation. The only overhead is having to use hypercalls instead of accessing
hardware directly. This may affect the performance slightly, but this is unavoidable since
direct hardware access is unacceptable in a virtual machine.

With paravirtualization, code is not translated. This means that one must be careful not to
allow it any access to the physical machine. Since all of this code runs in user mode, the only
way out should be calling the host kernel (at least, if the host kernel properly sets up
permissions). This should be prevented, as it might allow virtual machines more access than
they are entitled to.

If direct access to the host kernel is prevented, then the security of a paravirtualizing VMM
relies on the ability of the host operating system to securely isolate applications. If no host
operating system is installed, such protection should be provided by the kernel included in
the VMM. In both cases the robustness can be expected to be at the same level as the
protection between applications delivered by the host operating system. Paravirtualization
lacks the double security provided by binary translation.

For the relationship with the host operating system, it has been shown that a
paravirtualization VMM can run directly on the system (like Xen) or as an unprivileged
application inside a host operating system (like User Mode Linux).

With paravirtualization, each guest operating system has to be ported specifically. This
takes some effort and can only be done if the source code is available. A closed-source
operating system can only be used if it's owner ports it. Hence portability is rather bad for
paravirtualization.

Previrtualization

LeVasseur et al. [16] suggest a modified version of paravirtualization, which they call
previrtualization. In this case sensitive instructions are replaced by the compiler, drastically
reducing the effort needed to perform the port. This can only be done if the hypercall
interface is sufficiently similar to the interface sensitive instructions provide to the CPU,

I am not aware of current real-world usage of previrtualization. The University of Karlsruhe
is currently developing experimental VMMs which apply previrtualization. Marzipan runs
without an operating system and is based on the L4Ka Pistachio microkernel developed at the
same university. It is used for research. BurnNT runs as an application on Windows XP. This
program is currently in an early stage of development, being able to start the Linux kernel,
but not supporting user applications running on it yet.

Previrtualization is very similar to paravirtualization, but some differences in
characteristics can be expected.

The restriction that the hypercall interface be similar to the interface provided by the CPU
may result in lower performance than paravirtualization, where for example multiple actions
may be merged in a single hypercall. Performance can therefore be expected to be slightly

19

worse than for paravirtualization. Because code is not translated at runtime, a significant
performance benefit over binary translation can still be expected.

Portability is significantly better than for paravirtualization, since it should be possible to
port open source guest operating systems with little effort. Closed-source operating systems
still require that owner of the operating system cooperate with the porting effort.

Operating system level partitioning

I will discuss operating system level partitioning only briefly, as it is not really a virtualization
technique as defined by Popek and Goldberg. It is still an interesting technique because it is
much more lightweight than the solutions discussed before.

In case of partitioning, virtualization support is provided by the operating system. The
applications running on the operating system are partitioned in several isolated groups. The
implementation for system calls make sure that these groups cannot interact in ways different
than interaction between separate machines. This means that they do not share the same file
system and that one who has root access to a single partition may not have this privilege for
other partitions or the machine itself. Kamp and Watson [12] describe partitioning as
implemented by FreeBSD, where the feature is called “jails.”

Solaris 10 implements this feature and names it “Zones.” Partitioning on Solaris is highly
configurable, allowing partitions to share some read-only directories to avoid duplication of
data. OpenVZ and Linux V-Server are patches for the Linux kernel which allow one to use
partitioning on Linux.

Performance for partitioning is very good. Both applications and the kernel are executed
natively and hypercalls are not needed. The approach is very lightweight because there is no
need (and indeed, no possibility) to run multiple operating systems. Overhead is limited to
some extra security checks in the implementations for system calls.

The approach is as robust as the kernel itself, since no separate VMM is used. The
relationship with the operating system is inherently that the VMM is part of the kernel.

Portability of the partitioning solution is bad, since different partitions are all running the
same operating system as the host.

Application virtual machine

Yet another virtualization approach which is interesting despite not satisfying the Popek and
Goldberg definition is the use of application virtual machines.

An application virtual machine does not duplicate a real machine, but instead exposes an
instruction set architecture especially designed for virtualization. Such an instruction set is
designed for running applications, not operating systems. A simple VMM is in between the
guest application and the host operating system. This VMM typically compiles the guest
instructions and the caches the result. This is similar to dynamic binary translation, but in
this case the job is simplified by a good choice of virtual instruction set architecture. This
allows compiling larger chunks of code at once and is typically called “just in time
compilation” in this context.

20

Gough [6] discusses application virtual machines and describes and compares two
important examples: the Java Virtual Machine and Microsoft .NET. Both use an instruction
set which is stack based and inherently object oriented. The main difference between the two
is that Java is more oriented towards emulation, while .NET was designed with just in time
compilation in mind. In practice both use just in time compilation on common operating
systems running on IA-32. On other platforms only emulation may be available.

Because for application virtual machines the instruction set architecture is designed with
virtualization in mind, one can expect performance which is better than dynamic translation.

An application virtual machine can be very robust. The instruction set architecture is
normally designed with security in mind. One also has the same kind of double security that
there was in case of dynamic binary translation: all code passes through a translator, so no
code goes through unchecked.

Application virtual machines do not typically offer the level of isolation that normal virtual
machines do. Still the VMM is in complete control of all interaction between the application
and the operating system and it can selectively block or alter interaction with the system, if so
configured by the user. This may be even more useful than total isolation in some situations.

The relationship with the operating system is inherently that of an unprivileged
application.

An application virtual machine can only run guests using the specially defined instruction
set. This means that portability is very bad.

It deserves mention that application virtual machines such as Java have very good host
portability. One can execute an application on different operating systems and architectures
without recompilation as long as one has the proper version of the VMM.

Hardware supported

Recently Intel has introduced instruction set extensions which allow hardware supported
virtual machines. This new technology is called Virtual Machine Extensions (VMX). An
overview of this technology is presented by Uhlig et al [23] and complete documentation can
be found in [8].

Intel introduces a distinction between VMX root and nonroot modes. When the CPU runs
in root mode, it can set up an environment for the nonroot mode and switch. When it runs in
nonroot mode, sensitive instructions which do not trap and interrupts will cause a VM exit.
This saves the complete CPU state and restores the root mode situation. It is possible for the
root to prevent certain instructions from causing a VM exit for performance reasons.

21

Both modes are just like the original situation, including four security rings. In effect the
new chips therefore have 8 different security rings. This allows a guest operating system
running in nonroot mode to use ring 0, while the VMM stays in control. Therefore these
operating systems can run entirely without modification. Figure 5 shows this approach.

Now one can consider ring 0 of the VMX root mode to be supervisor mode, the VMX
nonroot mode to be user mode, and a VM exit to be a trap. The VMX extensions eliminate
exactly the problem that made IA-32 not satisfy the conditions for the Popek and Goldberg
theorem. Ring 1 through 3 of the VMX root mode still do not satisfy these conditions, but
they now can be avoided in the VMM.

The performance of hardware supported virtualization depends heavily on the
implementation of the chip. It is likely that performance is better than for binary translation,
but for paravirtualization it is hard to tell. This depends on which is more expensive: a
hypercall or a VM exit. The state data which needs to be updated on a VM exit is stored in a
4096-byte block of data, so more memory needs to be updated than for a hypercall. It is not
unthinkable, however, that the implementation highly optimises this specific case.

A VMM which uses the hardware solution is likely to be very simple, and as such likely to
be robust. Security would only be compromised if a bug causes guest code to execute in root
mode. Such a severe bug should be relatively unlikely in a simple, well-tested VMM. As such,
hardware virtualization can be considered to be very robust.

VMX instructions trap outside of ring 0. This means that kernel-mode support is needed to
be able to use them.

Portability between guest operating systems is very good. Like for dynamic binary
translation, it does not really matter what code executes on the Virtual Machine. Unlike
binary translation, porting in such a way that guests can run on a different architecture is not
possible.

2.3 - QEMU implementation
QEMU uses a binary dynamic translation approach designed with a focus on portability. This
allows for the support of a number of guest architectures on a number of host platforms. It
has three features that particularly increase portability: availability of a user-level memory
management unit, code generation from C code fragments and (optionally) absence of
kernel-level components. Each of these features will be discussed in turn.

22

Figure 5: Main loop for hardware-
supported virtualization

Set CPU to non-root mode

Execute code directy

VM exit

Handle cause of VM exit

User-level memory management unit

QEMU can be configured to use either the hardware memory management unit (MMU) built
into the CPU or to emulate one. To clarify the role of the MMU in dynamic binary translation,
I first discuss the function of the MMU and then the difference between software and
hardware solutions.

Programs running on modern CPUs in typical operating systems do not have access to all
physical memory in the computer. Instead, each process has one or more virtual address
spaces (segments) in which it can address memory more or less freely. These virtual address
spaces provide a view of a part of the total virtual memory space, which may include physical
RAM and memory-mapped IO ports as well as data swapped out to disk. This is typically
achieved through two mechanisms: segmentation and paging. Segmentation allows division
of the physical address space into a number of delimited virtual address spaces, while paging
allows mappings where virtual memory is not backed by a contiguous area of physical RAM.
Both additionally allow for access protection, restricting reads from and writes to specific
segments and pages. The MMU is the part of the CPU responsible for performing these
computations and checks.

To make matters concrete I discuss the x86 MMU, which supports both segmentation and
paging. When an x86 instruction references memory it specifies a virtual address as well as a
segment selector, the latter typically being implicit. Segmentation is handled before paging.
The MMU checks whether the virtual address is valid for the segment—it must not be above
the segment limit—and whether the reference is allowed for that segment—read-only
segments, for example, may not be written to. Next it computes the linear address by adding
the segment base to the virtual address. These linear addresses form a single address space
which is affected only by paging. Pages are blocks of memory, each typically 4096 bytes large.
To resolve a linear address to a physical address, the page it is in is looked up in the page table,
which specifies the corresponding page in the physical address space. Pages may be missing,
resulting in a page fault that allows the operating system to update the page table. The

23

Figure 6: MMU operation and terminology on x86

Virtual address spaces Linear address space Physical address space

Segment base added.
Protection fault when

limit exceeded.

Page table look-up.
Page fault when page
missing in page table.

0

segment limit

0

segment limit

0

segment limit

0

2 32 - 1

0

RAM size - 1

2 32 - ROM size

2 32 - 1

Missing, mappable for IO

segment base

segment base + limit - 1

RAM

ROM

segment base

segment base + limit - 1

RAM

Segment

Segment

Segment

physical address space mostly consists of addresses referring to RAM modules, but some
addresses may be mapped to ROM chips or IO devices. An overview of the entire process and
the terminology involved is provided in Figure 6.

If the guest CPU has an MMU, QEMU must emulate it. Segmentation is relatively easy to
implement efficiently. If one assumes that segment mappings are not changed, segmentation
is resolved by a simple addition with a constant known at translation time. This is the
approach used by QEMU. This means that translated code must be flushed when segment
mappings are changed, but as this is relatively rare and therefore has little performance
impact. QEMU could check segment limits in the same manner, but does not do so (at least
in version 0.8.2). This is a deviation from the x86 architecture and may cause problems with
operating systems that rely on it. Fortunately, it is not much of a problem in practice and it
keeps segmentation simple and fast.

Paging, in contrast, requires more processing. The page table is a large data structure,
stored in the memory of the guest machine. While the correct segment could be determined
during translation, most of the time addresses are computed at runtime so the correct page
table entry can only be looked up at runtime. This requires several memory reads for each
memory operation, which may slow down emulation significantly. The typical solution is to
let the host MMU do some of the work. This can be done using mmap, mprotect and related
POSIX calls, which allow user processes some control over the way pages in their data
segment are mapped. Unfortunately these calls can only be implemented on host CPUs that
have MMUs. Moreover some operating systems, including MINIX, do not implement these
calls on any architecture. A fully hardware-based solution to paging would therefore be a
major portability issue. Fortunately QEMU implements both a software and a hardware
MMU, allowing all use of the memory mapping functions to be disabled, although at the cost
of performance. If the software MMU is used, each memory reference is translated into a
function call emulating the MMU. The performance hit is mitigated somewhat by caching
page information in a translation look-aside buffer (TLB), which is similar to the mechanism
used in hardware MMUs.

Code generation

Virtualization software based on dynamic binary translation speeds up emulation by
generating host code that is functionally equivalent. Such a program has a collection of code
fragments which emulate guest instructions, which are glued together to generate guest code.
These code fragments must be very efficient because they are run all the time; since these
fragments are typically very small, a single additional instruction may cause a substantial
slow-down. This and the requirement that it must always be possible to copy these code
fragments around and glue them together makes it attractive to write them in assembly
language, so the programmer has complete control over what happens.

Unfortunately, using assembly greatly reduces portability as each processor architecture
has its own assembly language. Suppose a hypervisor supports n host architectures and m
guest architectures, all instructions for each guest architecture would need to be
implemented separately for each host architecture. This means one would need a total of n ·
m code fragment databases to be able to support every guest on each host. Therefore, while
use of hand-coded assembly provides a performance benefit, it makes supporting many host
architectures as well as many guest architectures very hard.

24

QEMU takes a different approach. All code fragments needed for emulating guest
instructions are coded in C and therefore the same code can be used on each host platform.
To be able to copy code around and glue it together, QEMU uses a program that analyses the
object file containing the compiled code fragments. By locating relocations and return
instructions this program makes it possible to move the code around safely. To reduce the
performance penalty incurred by using C rather than assembly, QEMU uses temporary
variables and forces the compiler to store them in CPU registers. This reduces the number of
memory operations, which would also be a major goal when using hand-coded assembly to
implement the instructions. These aspects are discussed in turn.

Moving code around

Unfortunately, concatenating C functions at runtime is nontrivial. To determine the size of
data structures at compile time, the C language offers the sizeof operator. No such operator
exists for functions so that one cannot determine how many bytes to copy to get the entire
function body. Even if it did, there would still be problems. Most forms of branching
instructions—such as function calls as well as conditional and unconditional jumps—take
arguments relative to the instruction pointer.

Figure 7 shows an example of a branching instruction with a relative address in x86
assembly. Assembly instructions and the addresses at which they are stored in memory are
shown on the left-hand side. The corresponding C code has been included on the right-hand
side to clarify what is happening here: the get_answer function calls the get_double function,
the former starting at 0x10000 and the latter at 0x11000. When the compiler comes across the
function call to get_double, it generates the call instruction. This instruction first pushes the
current address on the stack—so that the called function knows where to return to - and then
adds the specified value to the instruction pointer—causing a jump the specified function to
occur. This means the specified value is an address relative to the instruction pointer. If one
were to copy the get_answer function elsewhere to generate code, the destination will also
change. When the get_answer function is copied to 0x12000 for example, it will expect to find
get_double at address 0x13000 rather than 0x11000. When it jumps to this address, some
random code is executed and the program will most likely malfunction and/or crash. This
would not be much of an issue if one were to use assembly, as one could avoid instruction
pointer-relative references. Even if no such instructions are available or if they are inefficient,
one could at least know in advance where to find the references. This is unpredictable with C
code, especially when compiling on different platforms or even different compiler versions.

25

Figure 7: Function call with relative displacement on x86

0x00011000 mov eax, [esp + 4]
0x00011004 add eax, eax
0x00011006 ret

int get_double(int x)
{
 return x * 2;

}

0x00010000 push 0x15
0x00010002 call +0xff9
0x00010007 ret

int get_answer(void)
{
 return get_double(21);

}

Fortunately, compilers keep track of references to symbols. These are stored in a structure
called the relocation table in the object files created by the compiler. This allows the linker to
adjust these references once the addresses in the final executable are known. QEMU comes
with a tool called Dyngen that can also read symbol tables and relocation tables from object
files. It converts them into C header files, which are in turn used by the code that translates
guest instructions into host executable code. How this affects the compilation process is
shown in Figure 8.

First, the Dyngen tool is compiled and linked into an executable and the op.c file, which
contains implementations of the guest instructions, is compiled into an object file op.o.
Dyngen reads this object file. It recognizes code fragments because their names start with op_.
For each of these code fragments it locates the relocations that apply and generates code to
copy the code fragment and correct all relocations that apply to them. If the case shown in
Figure 7 were such a code fragment, the code generated would look something like this:

memcpy(gen_code_ptr, (void *)((char *) &get_answer+0), 7);
*(uint32_t *)(gen_code_ptr + 3) = (long) (&get_double) -
 (long) gen_code_ptr + -7;

The first line copies the code of the function into the code generation buffer. Although the
function is eight bytes long, it copies only seven. The last byte is the ret instruction, which
returns to the code that called the function. This is detected by Dyngen and it is not copied to
allow code fragments to be concatenated. The second line corrects the reference to
get_double. Dyngen detected this reference, which consists of a four-byte address at the
fourth byte of the function (gen_code_ptr + 3). The relative address is set to the address of the
function being called (&get_double) which is corrected by subtracting the value of the
instruction pointer of the instruction following the call instruction after copying
(gen_code_ptr + 7).

26

Figure 8: Steps in the compilation of QEMU using the Dyngen tool

op.h

compile
op.c op.o

opc.h

gen-op.h

translate-
all.c

#include

translate-
op.c

translate.c

#include

#include

compile

compile

compile

translate-
all.o

translate-
op.o

translate.o

*.c *.o compile

qemu

compile
dyngen.c dyngen.o dyngen l ink

l ink

extract symbols and relocations, generate headers

The header files are included into the C source files involved in the translation. Code
generation is a multi-step process, which will be explained in the next section; the C source
files explicitly mentioned in Figure 8 roughly correspond with different steps in the
translation process. Eventually, all C files are compiled and linked together so that the
addresses of the code fragments in op.o used in the translate*.c files are filled in by the
linker.

The approach to code generation used in QEMU has two implications for portability:

● Since no assembly code is used, porting between host processor architectures is made
much easier;

● Since Dyngen has to be able to read the relocation and symbol tables from object files,
porting to operating systems using different object file formats than already supported
requires additions to the Dyngen program.

The former implication has no effect on porting to MINIX as current versions of MINIX only
run on the x86 architecture, but the latter is relevant. In MINIX, object files are stored in a
very simple format called “a.out.” This is also the format of executables on the MINIX
platform. This format was not supported originally, so I had to add support for reading it and
applying its relocations to generated code.

Temporary registers and intermediate instructions

Another technique used by QEMU to generate code is worth mentioning: each guest
instruction is split in a number of simpler intermediate instructions before being translated
in host code. This process is demonstrated in Figure 9.

Like other dynamic binary translators, QEMU splits its input—the guest machine code—in
basic blocks. Basic blocks do not contain any jumps so that they are normally executed in
their entirety (that is, unless faults or interrupts occur). The basic block shown is a simple

27

Figure 9: Translation of a x86 function using intermediate code

push ebp

add [ebp + 0x08], edx

mov ebp, esp
mov edx, [ebp + 0x0c]

pop ebp

ret

Target basic block

movl A0 ebp

movl T1 edx

addl A0 0x0c
addl A0 ss.base

addl T0 T1

stl_raw T0 A0

Intermediate code

mov eax, [ebp + 0x08]
ldl_raw T0 A0

Host code

add ebx, esi

mov esi, [ebp + 0x04]

add edi, 0x0000000c
add edi, 0x00180000

call ldl_raw
push edi

mov ebx, eax

mov edi, [ebp + 0x14]

push ebx
push edi

call stl_raw update2_cc

mov [ebp + 0x28], esi
mov [ebp + 0x2c], ebx

function adding its two arguments and returning the result, compiled by a nonoptimizing
compiler for the x86 architecture. It can be represented in C as follows:

int addition(int x, int y)
{
 x += y;
 return x;
}

The most interesting part of this function is the addition, which is coded with only two x86
instructions. Besides adding, it involves more operations to load x and y from memory and to
store the new value for x. Moreover the CPU does not know whether the result will be used in
a conditional branch instruction, so it has check for several condition codes and store them in
the flags register. I focus on the add instruction itself, which performs most of these actions.
Before this instruction, y has been loaded into the edx register as x86 instructions can take at
most one memory operand. For QEMU to emulate the add instruction, the following
operations need to be performed:

● Compute the address of x, which is specified as ebp + 0x08, by first loading the value of
the ebp register and then adding the constant, storing the result in a temporary register
(named A0 by QEMU);

● As x is stored on the stack (which is implied by the use of the ebp register), the base of
the stack segment should be added to obtain the correct linear address. At this point
the segment limit ought to also be checked to avoid illegal memory references, but
QEMU does not do this currently;

● Load the second argument into a temporary register (named T1 by QEMU) from the
guest register edx;

● Load the first argument into a temporary register (named T0 by QEMU) from memory;

● Perform the addition using the temporary registers;

● Store the result of the addition back into memory;

● Update the condition codes; this involves checking for each of the following: a zero
result, a negative result, signed overflow, unsigned overflow, decimal overflow and
parity of the low-order byte.

Most of these operations correspond with a single intermediate instruction, most of which
are reused for many different guest instructions so that the total number of code fragments
stays reasonably low. In particular, many guest instructions reference memory using load and
store intermediate instruction such as ldl_raw and stl_raw. This not only keeps the code
fragments simpler and fewer in number, but also makes translation easier as the addressing
mode bytes can be translated separately from the guest instruction itself.

It should be noted that the use of intermediate instructions makes the emulation slightly
slower than would be possible by directly implementing host instructions. This happens due
to two reasons: two separate translation steps are needed and the compiler has less ability to
optimize the implementation of instructions. The latter is especially important. A direct
implementation of the entire add opcode would allow the compiler to allocate registers more
efficiently than is possibly when small code fragments are glued together.

Fortunately, the GNU C compiler allows one to statically allocate registers to global
variables. By allocating host registers for temporary registers and—if possible—for guest

28

registers, QEMU is able to prevent some of the overhead caused by the use of intermediate
instructions. This works especially well on RISC architectures, which tend to have many
registers. Since QEMU uses only three temporary registers—T0 and T1 for values and A0 for
addresses—they can be mapped to host registers even on architectures which have very few
general purpose registers, such as the x86 architecture.

The right-hand side of Figure 9 shows the host code that is produced for the add instruction
on an x86 host. Due to the use of host registers for temporary registers, most intermediate
instructions are translated into a single host instruction. Memory loads and stores are more
complex and are handled in separate functions.

As a further optimization, evaluation of condition codes is deferred to avoid unnecessary
computations. The update2_cc instruction in the diagram only stores the arguments of the
guest instruction for later use. If it can be determined in advance that none of the flags
resulting from the add are used, even this step is eliminated. This is not the case here, as the
caller of the function may use the flags after it returns. The ability to determine in advance
whether the flags register may be used is yet another advantage of the use of intermediate
instructions.

No kernel-level components

Modern CPUs are generally capable of running code at several privilege levels, allowing the
execution of the more sensitive instructions only for the most privileged code. For example,
the x86 architecture has four privilege levels called “rings.” These rings are numbered zero to
three. Ring zero allows complete control over the CPU, while ring three disallows the use of
most system instructions. This is done to keep the operating system in control; if an
application were able to execute system instructions it could bypass the protection
mechanisms provided by the operating system. Other architectures have similar protection
mechanisms, so I will use more generic terms in the remainder of this text. The most
privileged code—called ring zero on x86—will be referred to as kernel-level code. This is
where the operating system kernel typically runs. All other code—rings one, two and three on
x86—will be referred to as user-level code. This typically includes applications started by the
user but may also include some drivers that do not need to use system instructions. This is
especially common in microkernel operating systems such as MINIX, where the kernel size is
reduced by moving drivers out of the kernel into user space.

For the purpose of virtualization, the division between privileged code and less privileged
code is relevant for both the guest machine and the host machine. In a certain situation this
separation can be used to greatly speed up emulation: if the guest and host architectures are
the same, the guest is executing user code and the hypervisor is capable of executing in kernel
mode. In this case the hypervisor is capable of setting up an environment in which user code
can be run directly, without any translation. This approach is widely used together with
binary dynamic translation to speed up the execution of user code dramatically while still
being able to run kernel code safely.

The major drawback of direct code execution is that it requires the hypervisor to run in
kernel mode to allow it to set up the proper environment for guest user code to run in. The
guest must have the entire address space at its disposal, as static code analysis cannot reveal
in advance which memory locations will be referenced. Therefore a hypervisor running as a
user process cannot share its virtual address space with a virtual machine. The need to run in

29

kernel mode reduces portability. Kernel mode features can be accessed only in assembly,
which is hard to port between processor architectures. Moreover, the way in which kernel
modules are installed is not standardized between operating systems. Loading kernel
modules also threatens the stability of the host operating system if these modules may be
buggy or untrustworthy.

QEMU supports direct code execution, but does so using a separate and optional kernel
module called KQEMU. This kernel module creates a device /dev/kqemu (or \\.\kqemu in
Windows). Using the ioctl function this device can be used to set up an environment in
which guest code can run directly. Due to this approach, QEMU and KQEMU are very loosely
coupled and KQEMU support can be disabled completely, both at compile time and at
runtime. In this case QEMU performs dynamic translation for all code. This decreases
performance, but increases portability and stability of the host operating system.

For the MINIX port KQEMU support is always disabled. QEMU allocates memory for the
virtual machine in shared memory if KQEMU is used. As MINIX does not support shared
memory, this approach cannot be used in MINIX. KQEMU runs in kernel mode, so it should
be possible to circumvent this by directly addressing the memory in the address space of
QEMU. Due to time constraints, I chose not to implement this for now.

It should be noted that the way KQEMU works does not fit well with the MINIX ideal of
moving code out of kernel space. When running a virtual machine KQEMU takes control of
the entire system by changing control registers and installing a new interrupt table. This
effectively cuts the operating system out of the loop. The operating system is restored when
the next interrupt occurs. Due to this approach KQEMU can ignore restrictions imposed by
the operating system and a single bug in KQEMU might bring down the entire system. As an
alternative, system calls could be implemented to allow a process to do the following:

● Create a new address space to contain the virtual machine;

● To control its memory mappings to be able to reproduce the environment the virtual
machine runs in, including the ability to change both page and segment mappings;

● To access its memory efficiently;

● To receive signals sent to it to be able to detect error conditions.

In part, these features are already present. The fork system call allows one to create a new
address space and ptrace allows one to receive signals for another process. Shared memory
and the ability to change page mappings will probably become available when virtual memory
is implemented in MINIX. To change segment mappings for another process, a privileged
system call will be needed. When all of these features are available, it should be possible to
create an efficient alternative for KQEMU that does keeps the operating system in control.

30

3 - Issues encountered and changes made

3.1 - General
Especially when starting to work a porting project, one generally has little knowledge of the
way the program to be ported has been implemented. In the case of QEMU, there was some
documentation on the website, but most of this is about how to use QEMU rather than about
how QEMU has been implemented. Therefore, my knowledge about QEMU was mostly
general knowledge about the dynamic binary translation approach to virtualization. To get
started, I used a trial-and-error approach consisting of simply fixing problems whenever they
occur. This causes the process of porting a program to consist of the following steps:

● Get the configuration script to run;

● Get the all source files to compile;

● Create missing functions and other declarations to allow the compiled source files to
be linked together into executable files;

● Fix problems that prevent the program for running;

● Test whether all important functionality is still present in the port and repair
functionality wherever needed and possible.

Before starting the first step, a number of choices has to be made concerning the tools that
are to be used. In this case, the choice of compiler was particularly important as QEMU is
exceptionally picky about compilers. The standard compiler on the MINIX platform is the
Amsterdam Compiler Kit (ACK), which comes with the operating system and is used to
compile it. All other things being equal, it would have been preferable to use this compiler as
that would keep down the number of dependencies. Unfortunately however, the QEMU
source code is specifically aimed at the GNU compiler collection (GCC). The syntax is not
pure ANSI C, but relies on a number of GCC additions. Moreover, for code generation it
depends on the exact compiler output to such a degree that only GCC versions 3.3 and 3.4 are
supported; neither older nor newer versions can be used to compile QEMU version 0.8.2. The
degree of dependence of QEMU on compiler optimization is shown even further by the fact
that using an optimization level other than the one specified by the -O2 compiler switch or
disabling inlining to make debugging easier is also not possible. After I found these problems,
I decided to use GCC as porting QEMU to ACK would require making major changes.

After having chosen the correct compiler, the next goal was to create a script that would
configure QEMU for compilation on MINIX and then compile it. This script is called
build.minix. The configure shell script turned out to be incompatible with Ash, the default
shell used in MINIX. I have chosen to use the Korn Shell (ksh), which is capable of running
the script and is available as a MINIX package. This choice is arbitrary as most other shells
available on MINIX would also do.

Once the build.minix script was there to run the configure script and compile QEMU using
GCC, I simply started fixing compilation errors one by one. The exact changes I made will be
discussed further on in the chapter. One finding was that MINIX does not implement all
functions needed by QEMU. Most importantly, the setitimer function used to generate

31

regular alarm signals, functions used for virtual memory management and functions used for
floating point arithmetic were missing. This was fixed by providing headers so the
compilation would succeed even though the functions were not implemented. Using this
method it was possible to get all source files to compile reasonably quickly, although
eventually some functions were found to be missing by the linker.

In the next step, I needed to fix the missing library functions, either by creating
replacements for them or by avoiding their use. In general, I avoided using the virtual
memory functions and implemented the other functionality. In this phase, I attempted to
reproduce the functionality of the setitimer function in user space, which would avoid having
to make changes to MINIX, but its performance turned out to be too bad to be useful in
practice. This means that unfortunately, getting QEMU to run properly on MINIX requires
changes to the operating system. It should be noted that the changes that were made are not
QEMU-specific and that additions conform to the POSIX standard, which means that they
will also be useful for porting other software. I also attempted to keep changes to MINIX
down to the minimum possible by implementing missing library functions in user space
wherever possible.

The most important step in getting the compiled program to run was changing the code
generation program so that it can read MINIX object files and make the proper corrections
when copying code, as has been explained in section 2.3. Before fixing this, QEMU would
always crash with SIGILL or SIGSEGV signals or hang and was therefore useless even though it
did compile.

By the time QEMU could run mostly without crashes, testing showed that some
functionalities present on other operating systems had been lost in MINIX. Some had been
disabled intentionally, such as graphics support, while others did not work even though they
had not been disabled, such as networking, reading host CD-ROMs and reading large disks.
Graphics had been disabled because QEMU uses the Simple DirectMedia Layer (SDL) library
to render its graphics and this library had not yet been ported to MINIX. Although QEMU
can be built and run without it, it is of little use when it produces only text output. Therefore,
the SDL library had to be ported before QEMU would run well. The problems with
networking and CD-ROMs just mentioned eventually turned out to be caused by using the
ioctl function without error checks. Large disks could not be read because the lseek function
is implemented with a 32-bit offset, which means that only the first 4 GB of each file can be
read. Although this is not a problem for regular files—the MINIX 3 file system cannot be
larger than 4 GB—it is an issue if one wants to read another partition that does exceed this
size.

I will discuss the changes I needed to make to MINIX in more detail in the next section.
After that, I elaborate on the changes made to QEMU itself. In this section, I will also provide
some general recommendations for porting software to MINIX based on my experience with
QEMU. Not all changes I made were needed for QEMU to run correctly, some also added new
functionality that is convenient for running it on MINIX. These additions are discussed in a
separate section. After this, I provide information about how testing and debugging was
done. At the end of the chapter, I will discuss how suitable MINIX is for running programs
such as QEMU and how porting software to MINIX can be made easier.

32

3.2 - Changes made to MINIX
In this section, I describe the ways in which MINIX 3.1.2a has been changed to allow QEMU to
run on it. Each subsection describes why a change was needed, how the change has been
implemented and why this particular approach was chosen.

Addition of the setitimer function

Usage of setitimer

Some hardware emulated by QEMU needs to perform actions at regular time intervals or after
some delay. Most importantly, QEMU emulates an Intel 8254 programmable interrupt timer
(PIT) chip, which generates timer interrupts at a frequency set by the operating system
running on the virtual machine. MINIX, for example, uses timer interrupts to determine
when to switch processes and to keep track of the time. It programs the PIT to send a timer
interrupt 60 times per second; this frequency can be changed by altering the HZ constant
defined in /usr/include/minix/const.h and then recompiling and rebooting. Other operating
systems may set the timer to much higher frequencies and may be able to change the timer
frequency without recompiling or rebooting.

To be able to interrupt the virtual machine at the right moment, QEMU uses the setitimer
function to request that it receive a SIGALRM signal every millisecond. By default, the most
similar function present in MINIX is the alarm system call. This call, however, waits for at least
a second between SIGALRM signals. This shows that something needs to be done to be able to
properly emulate the Intel 8254 chip and other time-dependent hardware.

Possible solutions

Basically there are three possible solutions:

1. Avoid the need to use setitimer;

2. Implement the setitimer function in user space;

3. Implement the setitimer function in MINIX itself.

The first solution can be implemented by regularly checking the current time and calling the
SIGALRM signal handler directly whenever some amount of time has passed. This is reasonably
easy to implement in QEMU, as it is possible to insert such checks in the code generated for
the virtual machine. The generated code is generally executing most of the time, so one can
expect the timers to be checked often enough. The main problem with this approach is that
one has to insert many checks in the generated code, as one should avoid a situation in which
basic blocks are chained together into a loop that does not contain any timer checks. This
would cause the virtual machine as well as QEMU itself to hang. At the time code is generated
it is not known whether it will be part of such a loop, so a timer check has to be inserted into
most basic blocks. Summarizing, the first solution allows one to produce timer interrupts at a
high rate without modifications to MINIX, but can be expected to substantially slow down
emulation.

The second solution involves creating a new process to send SIGALRM signals to QEMU's
main process. This second process can be expressed in pseudo code as follows:

33

while (parent process is running)
{
 wait for specified amount of time;
 send SIGALRM to parent process;
}

The select system call allows the second process to wait for a specified amount of time. It
blocks the second process, so that it does not take much CPU time from QEMU. As the wait
time is passed to select in a struct timeval, in theory very small waits should be possible
Unfortunately, MINIX only checks whether the wait period has been completed when it
receives a timer interrupt at the time the quantum for the current process has expired. As was
mentioned before, MINIX only requests 60 timer interrupts per second by default, so
emulation does not run as well as it would on host operating systems which set the timer to
higher frequencies. Moreover, it may take even longer before the second process is scheduled
if is first has to wait for the 8-tick quantum of QEMU to run out. Although all timer
interrupts are still delivered to the virtual machine, they arrive in large batches rather than at
regular intervals if the frequency requested by the guest operating system is too high.
Moreover, switching between QEMU itself and the helper process can be expected to slow
down emulation. Summarizing, the second solution does not require modifications to MINIX
or to the generated code, but the rate at which timer interrupts can be generated is limited
and performance can be expected to be lower than with a kernel space implementation of
setitimer.

The third approach involves adding the setitimer system call to the process manager. Its
implementation is highly similar to the alarm system call and the two can share code. Again,
the maximum signal frequency is limited by the number of timer interrupts MINIX receives. I
preferred not to make any changes to MINIX, since the need to use a modified MINIX makes
installation more difficult and if MINIX needs to be changed I cannot really claim to have
ported QEMU to the original MINIX. However, adding a setitimer system call does solve the
problem without adding overhead for polling or extra context switches. Moreover, setitimer
is a standardized function specified as part of the optional XSI group of functions in POSIX
and as a mandatory function in the version 3 of the Single UNIX Specification [22]; this
means that adding it to MINIX is likely to also benefit other ports.

Implementation of setitimer

I have attempted each of the three solutions listed here and decided to use the third one as
the loss of performance caused by the other approaches is considered to be unacceptable. In
particular, when using the second approach QEMU was so slow that it was barely useful. This
may have to do with the large number of context switches caused by sending timer signals
from another process. The first approach has the advantage that it can produce clock
interrupts at any rate, which improves the quality of the emulation. Its implementation has
been kept in the source code, but it is only used if the CONFIG_DETERMINISTIC precompiler
symbol has been defined. It allows one to run a virtual machine in a deterministic way; this
feature will be discussed in detail in section 3.4.

My implementation of the setitimer call was obtained from David van Moolenbroek, a
PhD student working on MINIX. This essentially replaces the alarm system call with setitimer
and then implements the former using the latter; this is possible because the functionality of
alarm is a subset of that of setitimer. This allows for an efficient implementation that does
not require many changes and that does not use any additional timers. Unfortunately, while

34

testing QEMU with David's setitimer implementation, I found that due to this approach
some library functions using alarm system call and then restoring the original value caused
the setitimer settings to be lost. This was fixed by making these library functions use
setitimer directly rather than have them call the alarm function.

Timer resolution

As mentioned before, one issue with the setitimer function is that it cannot generate signals
at a higher rate than specified by the HZ constant. This is not much of a problem when
running guest operating systems that set the timer to a low frequency—such as MINIX itself
—but it turned out to be a problem when running operating systems that request more ticks
and are sensitive to timing. For example, while testing Windows 98 Second Edition I found
that it can only boot in safe mode. Using debug output, I found that Windows 98 normally
sets the clock to 200 Hz and that it is occasionally raised to 1000 Hz for short periods of time;
this means that regular delivery of clock interrupts is clearly impossible at the default setting
of 60 Hz. Unfortunately, on my test machine, increasing the clock frequency to match that on
the guest does not help in this case. At 1000 Hz, QEMU spends all its time generating clock
interrupts and barely any useful processing happens. Windows 98 SE can run if MINIX uses a
150 Hz timer. If one avoids alarm signals by configuring QEMU to run deterministically
Windows 98 does also run. See section 3.4 for more information on running deterministically.
I discuss my experiences with several operating systems in more detail in section 3.6.

The problem with the low resolution of the setitimer function on MINIX can be solved in
three ways. These are the possible solutions ordered by increasing complexity:

● Increase the value of the HZ constant;
● Allow software to change the timer frequency while MINIX is running;

● Schedule clock ticks based on need rather than periodically.

The first solution is the easiest one and this is what I have done to test guest operating
systems that need many ticks. Unfortunately, when using this solution one has to recompile
and reboot MINIX every time the clock frequency needs to be changed. Simply picking a very
high clock frequency is not desirable as it reduces performance, since servicing clock
interrupts costs CPU time that would otherwise be spent executing user code. The extent to
which high clock frequencies hamper performance has been tested and is described at length
in section 5.2. My tests show that, when compared to the hypothetical situation that the clock
is deactivated, each increase in frequency by one clock tick per second reduces performance
by -7.29 · 10-4 %/Hz. This may seem to be a very small figure, but it means that general
performance degradation is approximately 0.75% at the 1024 Hz frequency preferred by
QEMU. When the system is idle, using a high clock frequency also increases power usage and,
when running as a guest operating system on a virtual machine, slows down the host
computer.

The second solution is used on standard Linux. Linux allows programs to set the clock
frequency by using the ioctl function with the RTC_IRQP_SET request code on the /dev/rtc
device. This way, extra timer interrupts are only generated when some program needs them
and there is no need for recompilation or rebooting. This feature is used by QEMU on Linux
to set the clock frequency to 1024 Hz. Implementing this in MINIX is reasonably simple: a
device has to be implemented to allow processes to set the clock frequency, the frequency has
to be changed from a constant into a variable and some of the timekeeping code will need to

35

be changed to deal with heterogeneous cycle lengths. To perform the performance test
discussed earlier, I have implemented this in practice as a /dev/clock device; this
implementation is discussed in more detail together with the test.

The third solution would involve larger changes to the MINIX kernel than the others, but
would also provide the largest gain. By avoiding periodic clock cycles and instead scheduling
clock ticks based on need, time-outs in functions such as setitimer are as accurate as
possible, while idle power consumption is reduced. This solution, a tickless kernel, has been
implemented as a patch to Linux and has been merged into the current release version on the
x86 architecture [7].

I have chosen not to address the issue of the minimal setitimer interval being too large for
now, as each of the solutions has some problems:

● Increasing the HZ constant negatively affects operating system performance and the
new value would have to be chosen arbitrarily.

● My implementation of a device that allows processes to set the clock speed is too
experimental for me to recommend its use. In particular, it uses a very high value for
the HZ constant which reduces maximum system uptime because of the 32-bit signed
realtime variable in kernel/clock.c overflowing. This happens after 231

60Hz
≈414days for

standard MINIX and 231

2400Hz
≈10.4days for my implementation. It may also cause

problems with some drivers that use ticks for timing while not using the HZ constant.
Moreover, only divisors of the HZ constant are allowed as clock frequencies with my
implementation. A more durable solution would have to be implemented for general
usage and this is outside the scope of this master's project.

● Implementing a tickless kernel takes more effort than a settable frequency, so this is
also outside the scope of this master's project, but might be a useful addition to MINIX
in the future. It would provide more accurate timing and would use less power, which
would be desirable considering MINIX' goal of being suitable for embedded
computers.

As most operating systems will run as guests even with a 60 Hz clock cycle, this change is not
considered essential for QEMU. Any user that still wants to be able to run such operating
systems can change the HZ constant and recompile MINIX.

Implementation of the pread64 and pwrite64 functions

By default, MINIX cannot read from or write at file offsets above 4 GB. This is due to fact that
the file system driver uses a 32-bit integer to store the current file position. Operations that
cause the file position to overflow are not permitted. This is not a problem for regular files as
the file system itself cannot grow larger than 4 GB, but it is a serious limitation when
accessing large block devices such as the hard disk or its partitions. If this problem is not
fixed, physical partitions over 4 GB cannot be used by virtual machines.

One way around the problem, which is used in some of the utilities included with MINIX,
is to use the DIOCSETP ioctl code to change the partition table in the memory of the hard disk
driver. Although this does work, it is not satisfactory for use with QEMU. The most important
problem is that it consists of a number of steps and that in between these steps other
processes' views of the disk are changed, leading to a race condition if multiple processes
access the disk simultaneously.

36

As an illustration, the following code sample shows the workaround being used to read
size bytes of data at byte offset from an open disk identified by the file descriptor fd:

/* step 1: read old partition table */
ioctl(fd, DIOCGETP, &partition_entry);

/* step 2: adjust partition table base and size */
partition_entry_temp = partition_entry;
partition_entry_temp.base = add64(partition_entry_temp.base, offset);
partition_entry_temp.size = sub64(partition_entry_temp.size, offset);
ioctl(fd, DIOCSETP, &partition_entry_temp);

/* step 3: seek and read/write */
lseek(fd, 0, SEEK_SET);
read(fd, buffer, sizeof(buffer));

/* step 4: restore partition table */
ioctl(fd, DIOCSETP, &partition_entry);

Now suppose that two instances of QEMU are running, both using the physical hard disk
/dev/c0d0 as their primary hard disk. This is quite possible in practice, for example if MINIX 3
is running on a triple boot system and both of the other operating systems are run
simultaneously with MINIX 3 using QEMU. Now suppose that both instances read the disk,
the first instance at offset1 and the second at offset2. Table 1 shows a possible schedule for
the operations shown in the source code example, indicating what can go wrong. Instance 2
stores the wrong offset because it has just been modified by instance 1. This results in it
restoring the partition base incorrectly at the end, so all disk reads will return incorrect
results until the driver is reset. Moreover the processes interfere with each other by one
process changing the partition base before the other gets an opportunity to perform the read.
As a result, both reads also return incorrect data. The schedule shown in Table 1 is a worst
case scenario which will not happen often in practice, but does show why having such a race
condition in QEMU is unacceptable.

To solve the race condition without making large changes in MINIX, I added two ioctl
functions to the disk driver. This allows it to bypass the file system driver, which unlike the
disk driver uses only 32 bits to store file offsets but allows ioctl calls to be passed on to the
driver. The new ioctl functions are called DIOCREAD64 and DIOCWRITE64 and, like DIOCGETP and
DIOCSETP, they are implemented in libdriver, which is a basic driver framework used by the
disk drivers. Like the original workaround, they are implemented by shifting the partition
base, performing a read or write operation and restoring the partition base again. Unlike with
the workaround, it is not possible to interrupt this sequence halfway because the driver can
handle only one request at a time. Additional requests from other processes are blocked until
the ioctl call returns. This is more secure and increases performance because fewer context
switches are needed.

37

Table 1: Possible schedule when two instances of QEMU read the same disk

Instance 1 Instance 2 Action Base afterwards Error
b

Step 1 Store base: b b
Step 2 Set base: b + offset1 b + offset1

Step 1 Store base: b + offset 1 b + offset1
Step 2 Set base: b + offset1 + offset2 b + offset1 + offset2

Step 3 Read data b + offset1 + offset2 Read data at offset1 + offset2 rather than offset1
Step 4 Restore base: b b

Step 3 Read data b Read data at 0 rather than offset2
Step 4 Restore base: b + offset 1 b + offset1 Base restored to incorrect value

Besides adding the ioctl calls, I also added two library functions. These functions, pread64
and pwrite64, are also provided by Linux. Both the signature and functionality of the
functions are as similar as possible to their counterparts in Linux, but two changes needed to
be made. First, the offset parameter uses the MINIX-specific u64_t type rather than the
compiler built-in long long type because the latter is not available on ACK. The other
difference is that the file position is not changed if it would not fit into a 32-bit integer. These
functions use lseek and read or write when possible—when the both the offset and the file
pointer after reading fit within a 32-bit integer—and use the new ioctl functions otherwise.
This makes sure that the functions work for both regular files and for devices that support the
new ioctl functions.

Signal handling bug

MINIX 3.1.2a has been the target platform for the port of QEMU. Although even at the time I
started working on the port a newer release of MINIX was available, the newer release was not
stable. I decided that it would be easier to test on a platform that would not itself introduce
bugs, which is why I used the stable release instead.

Unfortunately, I noticed some odd behaviour in QEMU that I could not explain by looking
at the source code or even at the assembly code. It turned out that a bug in MINIX caused the
contents of the flags CPU register to be overwritten whenever a signal occurred. If this
happens between a comparison and a conditional jump, it may cause the jump to be taken
even though it should not be or vice versa. It was very hard to find the cause of the problem,
as one generally assumes that this kind of low level operating system functionality has been
tested very thoroughly and should be relatively bug-free. However, as signals are relatively
rare in most programs and the flags register being overwritten does not have a noticeable
effect in most cases, this bug has very little effect on most programs. Due to the large number
of signals QEMU receives from the setitimer function, the problem did occasionally crash
QEMU at unpredictable moments. Fortunately, the bug had been found before and had been
fixed in the version of MINIX in the source control; I would like to thank Jens de Smit for
pointing this out to me in a newsgroup post [14].

The fixed version of the do_sigreturn function from the MINIX source code on SubVersion
has been included to allow QEMU to run stably on MINIX 3.1.2a. It should be noted that this
fix can be omitted if QEMU is being used on future releases of MINIX.

Use of the select function with the /dev/eth device

MINIX, like other POSIX-compliant operating systems, provides the select system call to
wait for multiple file descriptors to become available for reading or writing. This capability is
used in QEMU to be able to pass incoming input to and process output from the virtual
machine without blocking. It is also used by the qemu-vswitch program I created to increase
QEMU network functionality on MINIX; this program is described in detail in section 3.4.
Depending on the networking settings, these programs may pass handles for the /dev/eth
device to select so as to wait for incoming raw network packets. Unfortunately, in MINIX the
select call fails if such handles are specified, as this functionality is not implemented for
them. To be able to wait for network input on MINIX, I added this functionality to the MINIX
network stack.

38

Servers implementing MINIX devices are sent DEV_SELECT messages whenever select is
called for such a device. The /dev/eth device is implemented by the inet driver which
implements the network stack. Based on the minor device number, it forwards such requests
to the eth_select function. By default this function does nothing but print a message saying
that it is not implemented. Fortunately, select functionality is implemented by the very
similar /dev/udp device that is also part of the inet server. All datagram-oriented services—
ethernet, IP and UDP—are implemented in very similar ways, the difference being mostly the
way headers are parsed. For this reason I decided to copy the implementation of udp_select to
eth_select, changing not much more than just the names of the data structures used and
their members. This fixed the problem and the patched MINIX now accepts requests to wait
for incoming ethernet packets.

3.3 - Porting QEMU
In this section, I discuss all changes I made to QEMU: how the need for change was found,
why change was needed and what was changed. Many issues I encountered are likely to occur
when porting other software as well, so I aim for this section to serve as a tutorial for porting
software to MINIX. In particular, the first sub-section discusses a number of general caveats
that most people porting software to MINIX are likely encounter and knowing about which
would have saved me many hours of debugging. The other sub-sections each discuss issues
related to some specific aspects of the program, such as compilation, code generation and
networking. I hope that they may be useful for people experiencing problems with these
aspects when porting programs.

General remarks on porting software to MINIX

Different ioctl operations

The ioctl function allows software to perform driver-specific operations on file handles.
Since drivers typically implement different functionality and use different names for ioctl
control codes, even for the same devices on different operating systems, the ioctl function is
a general portability problem. However, I think the problems it caused me with QEMU
justifies warning not to overlook calls to ioctl call when porting software to MINIX.

To allow QEMU to compile even if some ioctl control codes are not supported by the
operating system, code sections using nonstandard control codes are typically conditionally
compiled using the #ifdef preprocessor directive. In these cases, a fall-back option is
provided to deal with the case that no suitable control code is supported. For example, to find
the size of a CD DIOCGMEDIASIZE is used on BSD and DKIOCGMEDIAINFO is used on Sun systems.
The fall-back option is to seek to the end of the file and use the position of the end, but
MINIX does not support this and returns zero. The result is that, by default, neither the
compiler nor QEMU itself complains but the program cannot read CDs. The solution is to
add another conditionally compiled section using the DIOCGETP ioctl, which is the MINIX
equivalent of the other calls. To prevent spending a lot of time on finding the cause of the
bug, it would be smart to search for all ioctl calls in advance to be able to know where to
expect portability problems.

39

Another ioctl-related problem is that MINIX implements some calls for fewer devices than
QEMU expects them to work for. I found this problem with the FIONREAD call, which
determines the number of bytes still to be read on a socket. This function is implemented
only for TCP sockets, but QEMU uses it for UDP sockets. As QEMU neither checked whether
the ioctl function returned an error code nor provided a default value for the result, it was
hard to find out that failure of this call was the reason I experienced network emulation
failures.

Hardware floating point arithmetic is not supported

Most CPUs implementing the x86 architecture provide a floating point unit (FPU) which
allows floating point operations to be performed quickly and accurately. Unfortunately,
MINIX does not support use of the FPU. Although programs could in principle use it by
issuing floating point instructions, the floating point registers are not saved by MINIX and
multiple processes using the FPU would interfere with each other's computations.

The unavailability of the FPU is hidden from programmers as both the ACK and GCC
compilers implement floating point computation by calling library functions rather than
emitting x86 FPU instructions. These library functions implement floating point arithmetic
using regular CPU instructions, but unfortunately the results are not identical to those
provided by the real FPU. In particular, the FPU which comes with x86 chips uses an 80-bit
representation of floating point numbers, called long double by C compilers. The floating
point library only supports the float (32-bit) and double (64-bit) representations. Usage of
the long double type is avoided by calling the double versions of the functions instead. This
reduces accuracy as well as the range of numbers that can be represented. These issues can be
worked around by using another floating point library that does support the long double
type. As QEMU comes with such a library, intended for instruction set architectures that do
not support an FPU, I decided enable this library. The inaccurate default library is replaced
and virtual machines get the accuracy they expect. It should, however, be noted that due to
this issue floating point arithmetic is truly slow on MINIX.

Besides causing reduced accuracy, it should also be noted that emulated floating point
support also drastically reduces performance of programs that use floating point
computations. This should be taken into consideration when deciding whether to port
compute-intensive software to MINIX, or when considering running such software on top of
the MINIX port of QEMU.

Another issue with the MINIX floating point implementation is that it does not include
functions related to rounding, such as nearbyint, rint and fesetround, and also lacks the
remainder function. Each of these functions is mandatory in POSIX and version 3 of the
Single UNIX Specification [22], so their addition also makes other ports easier. Since these
functions are needed by QEMU, I provided implementations for them. These
implementations are found in the minix-math.c file, which is included in the /qemu/qemu-
0.8.2-minix/minix directory of the CD-ROM that comes with this thesis. Further information
on the contents of the CD-ROM can be found in Appendix A. I implemented the
nearbyint_rm function by operating directly on the bits of the IEEE 754 double type as
specified in [9]. First it truncates the number by setting all bits which have a significance
smaller than one to zero and then it corrects for the rounding mode. All rounding modes are
supported: towards zero (truncation), upward (ceiling), downward (floor) and to nearest

40

(bankers' rounding). This is needed as the emulated FPU should also be able to deal with
every rounding mode. This function is used to implement the others.

Lack of a loopback device

On many operating systems, the localhost (IPv4 address 127.0.0.1) address allows one to use
the networking functions without using an actual network adapter. This can be a convenient
method of interprocess communication, with the additional advantage that it is easy to
switch between interprocess communication on the local machine and over the network.
Unfortunately, MINIX implements localhost in a different way than do most other operating
systems, resulting in an unexpected reduction in functionality. Rather than delivering local
packets through a special network loopback device, local packets are delivered to the same
device handling the physical network adapter. This has a two implications for user programs:

● Packets to localhost are delivered only if the computer has an IP address. This can be
tested by running ping localhost. This only works if the computer has an IP address,
for example obtained from a DHCP server or set using ifconfig.

● The bind function, which is typically used by server programs to indicate which IP
address and port number to listen on, fails if the IP address 127.0.0.1 is specified.

The former issue causes socket IPC to only be possible with either a working network
connection or if ifconfig has been used to set an IP address. This is not needed on operating
systems that use a separate device, such as lo on Linux, to deliver local packets. In this case
the IP address of the physical network adapter (if any) is irrelevant for the delivery of local
packets. One result of this is that X11, which uses sockets to communicate between the X
server and X clients, can only be run if either the network is functional or a fake IP address is
specified using ifconfig.

The latter issue is particularly relevant for porting programs. A server program may attempt
to bind to localhost to make sure that only local requests are accepted, for example for
security reasons or to avoid interfering with other servers. In this case bind will fail, specifying
that it cannot bind to the address. Considering that localhost should always be a valid IP
address, this had me puzzled. Originally, I assumed that I got the byte order of the IP address
or port wrong or that the port was already in use. Only inspection of the MINIX source code
made me understand the cause was really this issue. An easy workaround is to specify
INADDR_ANY instead of 127.0.0.1, causing connections from any IP address to be accepted. If it is
important that only local connections are accepted, one should check the remote addresses
returned by the accept socket call.

Limited implementation of socket functions

On most operating systems, one can use the read, recv and recvfrom functions to receive
incoming data on sockets and the write, send and sendto functions to send data. The recv and
send functions are more flexible than read and write respectively as they allow one to specify
flags. The recvfrom and sendto functions are even more flexible, as they allow one to
determine the source host or to specify the destination host. This is useful with datagram-
based services such as UDP, which operate without connections so that these cannot be
determined from the handle.

41

MINIX implements the recv and send functions by calling recvfrom and sendto respectively
and only implements the latter two functions for UDP sockets. Moreover, even though they
are implemented, MINIX does not provide headers for the recv and send functions. QEMU,
uses the recv and send functions specifying TCP sockets. When QEMU originally warned that
these functions were being declared implicitly, I found that they were implemented and
added their headers. This eventually caused them to fail, even though the calls would be
perfectly valid on other operating systems. Fortunately, QEMU never specifies any flags when
using these functions, so I was able to fix the issue by replacing recv and send calls with
equivalent read and write calls.

Another minor issue with the MINIX network functions is that the recvfrom function
contains a left-over debug message: "recvfrom: for fd %d\n". This is more a minor annoyance
rather than a real problem, but I did fix it as part of my MINIX patches. It has also been fixed
in the version of MINIX found on SubVersion.

Memory allocations are more likely to fail

Since MINIX does not support virtual memory, each process obtains a fixed amount of
memory when it is started and when a new executable image is loaded. This means that
assigning the right amount of memory in advance is crucial for the programs to function
adequately. If too little memory is assigned, memory allocations will start to fail at some
point. If too much memory is assigned, memory is wasted and fewer processes can be run
simultaneously. The total amount of memory needed is hard to predict, causing the malloc
function to return NULL occasionally if insufficient memory has been assigned. This is not as
common on most other operating systems, where virtual memory allows the amount of
memory used to be changed at runtime.

Because failure to allocate memory is so uncommon on other operating systems,
programmers often do not check whether malloc succeeded. If malloc fails and this is not
noticed, data is written to the NULL pointer and the memory locations following it. As
elaborated on in the next sub-section, this need not result in a segmentation fault. Hence,
failed allocation can cause data corruption, the effect of which may not be noticed until much
later on. Hence it is important to make sure that programs ported to MINIX always check
whether memory allocations succeeded.

NULL is a valid pointer

NULL is a valid pointer on MINIX. This means reads from and writes to the NULL pointer will
not fail, but rather go undetected. Other operating system typically use paging to mark NULL
as an invalid address, causing a SIGSEGV signal immediately on attempts to read, write or
execute at or close to this address. This is currently not possible in MINIX as it does not use
paging; this may change when virtual memory is introduced. In the case of QEMU, bugs in
some cases caused jumps or calls to NULL, which I did not recognize as such initially. Such
jumps and calls may fail eventually or they may restart the program, as the NULL pointer is a
valid and common value for the program entry point in MINIX. In either case, a core dump is
likely to be produced eventually but it is harder to analyse than it would have been if the
program had failed immediately.

The simplest solution to be able to detect jumps to NULL is to create a binary with a shared
instruction and data segment and then write an invalid CPU instruction to NULL. Combining

42

the instruction and data segments is needed because it is not possible to modify the
instruction segment otherwise. When using the ACK compiler, the -com linker switch
combines the segments. With GCC no switch is needed as it always combines segments. One
effective way write an invalid CPU instruction is to add following code to the program in such
a way that it is executed as soon as possible:

#ifdef __minix
 *(short *) NULL = 0x0b0f;
#endif

This code fragment sets the instruction at NULL to the UD2 x86 opcode, which is guaranteed by
Intel to always be considered an illegal instruction [10]. Executing it results in a SIGILL signal
and typically a core dump. The instruction is represented by the bytes 0x0f and 0x0b (note
that the bytes are reversed in the code fragment because the x86 architecture is little endian).
It is important that the code is only included on MINIX, as it would cause a segmentation
fault on most other operating systems.

The main advantage of the approach described in the previous paragraphs is that it is
simple and does not require changes to the operating system. Unfortunately, it only detects
jumps or calls to NULL and does not detect read or write operations. Catching bugs related to
reading from or writing to NULL requires cooperation from the CPU, which in turn means
MINIX must be modified.

For my testing, I have implemented the mprotect system call in MINIX. This call allows
processes to mark which memory pages can be read from and written to. This call is typically
implemented on operating systems supporting virtual memory. It was reasonably easy to
implement on MINIX because, although it does support virtual memory and does not really
use paging, paging is enabled and a page table corresponding with the identity map is used.
My implementation of mprotect can be found on the CD-ROM supplied with this thesis in the
minix/minix-3.1.2a-mprotect directory. The contents of this CD-ROM are described in
Appendix A.

If one makes sure that the first memory page—4096 bytes on the x86 architecture—of the
binary image contains nothing important, this function allows one to completely block access
to NULL. This is the default behaviour on many operating systems and it makes bugs involving
the NULL pointer very easy to detect. Experience shows that both ACK and GCC place the entry
point—the code calling the main function—at the beginning of the executable image. After
the program has started, this code should never be used again and access to it can safely be
blocked. To avoid other useful functions from being blocked, garbage should be place directly
after the entry point code to fill up the first page. This garbage should be code rather than
data, as data is always placed after the code section.

It should be noted that my mprotect implementation is intended for debugging purposes
only; it has not been tested extensively, but it does show that solving the NULL pointer problem
is possible in MINIX with few changes. I expect a version of this function suitable for serious
use to become available in MINIX when virtual memory is implemented.

Random branching when signals arrive

Due to a bug in the sigreturn function, the CPU flags are not properly restored after a signal.
This goes unnoticed most of the time, but will cause random crashes and weird behaviour
eventually. This is the same issue described in section 3.2. I would recommend anyone

43

noticing unexpected behaviour in the program they are porting to attempt whether applying
this fix helps. This is particularly likely to help if the program receives many signals and if the
issue involves flow control statements, such as if, for and while in C, behaving erratically.

Changes related to compilation

As mentioned before, my first aim was to get MINIX to compile. As I was not very familiar
with QEMU yet, having the compiler pinpoint issues was the most convenient way to find
what should be changed. Fortunately, as I was using the same compiler used on other
platforms, I did not need to fix any syntax errors. If I had used ACK, there would have been
many such errors; for example, the // single-line comment style is often used, while ACK only
accepts /* ... */ multi-line comments. Although the former style is not valid in C code, it is
accepted by GCC. This means all remaining errors and most warnings pointed to real issues.

As I believe that a program should compile without warnings to really be correct, I have
fixed most warnings as if they had been errors. Only one type warning could not be
eliminated easily, so I disabled it. This is the warning about type compatibility in printf calls.
To avoid these warnings, the types specified in the format string should match exactly the
types of the arguments, but this is hard to accomplish if types are set to int on one platform
and long on another. This distinction is irrelevant on MINIX, as both types are identical at 32
bits, although it might become a problem if MINIX were to be ported to a 64-bit architecture.

Build script and configuration

As I discussed in section 3.1, I created a build.minix shell script that allows QEMU to be built.
This script is required by the package manager to have a fixed way of building packages, but it
is also useful for people making changes to QEMU to be able to fully recompile easily. The
build script takes care of the following things:

● Specify where the GCC compiler and its tools are to be found. This is needed because,
in MINIX, these programs are in the /usr/gnu/bin directory rather than in one of the
default binaries directories.

● Run the configure script to set compilation parameters. This script cannot be run
using the default shell that comes with MINIX, so the Korn shell is used instead.

● Perform a clean build and installation using the Makefile.

● Set the amount of memory that QEMU is allowed to use. MINIX requires this amount
of memory to be set in advance using the chmem command. I chose to assign 144 MB of
memory by default, which is enough to run a virtual machine with the default setting
of 128 MB of RAM.

I made the following changes in the configuration script:

● Allow MINIX to be detected and specify CONFIG_MINIX to the Makefile if the program is
being compiled on MINIX. The uname -s command is used to detect the operating
system; it returns Minix on MINIX.

● Add the –enable-deterministic, --enable-histogram, --enable-host-time and
--enable-qemu-profile options. This options enable new features I added, which are
disabled by default. These features are discussed in section 3.4.

44

● Allow the archiver to be used to create libraries to be specified on the command line.
Normally the default archiver ar is used, but I use /usr/gnu/bin/gar from the GNU
toolchain instead of the MINIX default implementation.

● The configure script creates a file config-host.h, which is included in many of the
source files. On MINIX, this file includes minix/minix.h, which includes header
definitions that are missing in MINIX. I will discuss this issue in more detail later.

● Additions to allow the Curses library to be used instead of X, based on a patch found
in the Debian Linux package management system.

Removing references to missing headers, functions and fields

Some functionality could simply not remain in the MINIX port of QEMU, as MINIX does not
support these features at all and writing an implementation of them—either in user mode or
as part of the operating system—is not feasible. I found three such issues:

● Virtual memory is not supported, including the ability to protect memory regions
against change and the ability to map files to memory. This means that the sys/mman.h
header file as well as all functions it contains are missing. The result for QEMU is that:

○ QEMU can only be built using the soft-MMU configuration. This means that it
emulates the guest MMU entirely in software rather than use the host MMU
whenever possible. It is to be expected that this reduces performance somewhat.

○ I had to disable the COW virtual disk format, which is implemented using memory
mapped files. The reasons for and implications of disabling it are discussed in more
detail in the section on missing features.

● The IP_MULTICAST_LOOP socket option and the use of out of band data with TCP sockets
are not supported, as these features are missing in the MINIX network driver. Again,
the implications are discussed in more detail in the section on missing features.

● There is no st_blocks in struct stat. On some other operating systems, this member
is provided to indicate how much space a file takes up on disk. This may be less than
the actual file size if the file has holes or is compressed. It may be slightly more if the
file allocates a disk block that is not completely used. In QEMU, this member is used
to show information about virtual disk files. Therefore, getting the exact number is not
all that important. I simply use the file size rounded up to the maximum disk block
size, which is an overestimation of the actual allocated size.

The code sections related to the issues mentioned here were conditionally disabled using the
preprocessor. In most some cases I added #ifdef __minix ... #endif, while in others I added
&& !defined(__minix) to an existing #if construct.

Adding missing declarations

Those references to missing header files and functions that were too important to be removed
had to be added in additional header files. For this purpose, I created a minix/include
subdirectory for the header files that were missing or incomplete. These headers are always
included by including them in the minix/minix.h file described before.

45

There is also a number of header files that need to be included in MINIX but not on other
operating systems. For example, Linux automatically includes sys/select.h whenever
stdlib.h is used. This does not happen in MINIX, resulting in compilation errors if its
declarations are used. The same goes for some other header files, which are either included
from the minix/minix.h file if they are used often or in the source files themselves otherwise.
It should be noted that this has additional consequences. For example, the file dyngen-exec.h
intentionally does not include stdint.h to be able to redefine the uint8_t, uint16_t, uint32_t,
uint64_t, uint8_t, uint16_t, uint32_t and uint64_t types. On MINIX, this file is indirectly
included through minix/minix.h. To avoid compilation problems due to redefinition of these
types, their declarations are disabled on MINIX. This does not cause problems because the
sizes of these types are always correct on 32-bit systems.

To be more concrete, I found the following declarations used by QEMU to be missing in
the MINIX header files:

● The ENOTSUP error code in errno.h;

● Rounding control functions and constants in fenv.h;

● Many floating point functions in math.h;

● 64-bit integer support in stdint.h;

● The realpath function in stdlib.h;

● The localtime_r function in time.h;

● The inet_aton function and some socket-related constants in sys/socket.h.

Adding these missing definitions to get QEMU to compile was my first concern, while
implementing the missing functions was done later based on the missing symbols reported
by the linker.

Another header file causing problems is zlib.h. In MINIX, this file is not installed in
/usr/include but can only be found in /usr/src/lib/zlib-1.2.3. As a solution I added this
directory to the include path in the makefile.

Removing compiler warnings

Some of the changes I made just to remove compiler warnings are not discussed in detail, but
I mention them in this section to be complete:

● There were some warnings about unassigned variables being used. In all cases the
variable would always be initialized before being used, but the compiler could not
detect this. I fixed these warnings by initializing them in their declarations.

● The isalpha macro in the ctype.h header file determines whether a character is
alphabetical. Both MINIX and Linux use an array lookup to do this, but Linux casts the
argument to an int first while MINIX does not. This causes an array lookup with a char
index on MINIX. As char may be signed on some compilers and unsigned on other
compilers, the array lookup is ambiguous and the compiler emits a warning. This was
fixed by explicitly casting the argument to the int type.

● Socket functions that return a socket address, such as accept, getsockname and
recvfrom, use the socklen_t type defined in sys/socket.h to return the size of the

46

socket address. This type is defined as int on Linux and long on MINIX. QEMU used
the int type directly, which goes unnoticed on Linux but causes warnings on MINIX
because, even though the types are identical in the current 32-bit world, they may
become different in the future. I fixed this by using socklen_t instead of int wherever
appropriate.

● Some variables and labels were unused because the only place they were used was
disabled by #ifdef compiler directives on MINIX. I fixed this by conditionally
compiling their declarations using the same condition.

Although these changes may seem trivial and irrelevant corrections—they probably do not
make any difference to the compiled files—I still consider these changes to be useful when
porting. Compiler warnings are a way in which the compiler helps pointing out potential
issues. By eradicating all warnings, either by fixing them or by thinking through their
potential consequences well and then disabling them, one can be sure to have used this help
to the largest extent possible.

Changes related to code generation

As has been discussed in the section of the implementation of code generation in QEMU,
information about code fragments is extracted from object files by the Dyngen tool. Using
this information, it generates C code that can copy the code fragments and make the proper
adjustments. In MINIX, object files use the “a.out” format. This is a very simple binary format
which has fixed sections to be loaded—code, initialized and uninitialized data—directly
followed by relocation and symbol tables. Dyngen uses the symbol table to find out what code
fragments exist and how large they are; implementations of code fragments are marked by
the prefix op_ in their function name. The relocation table is used to find out which pointers
must be adjusted when the code is moved around. The code itself is also used, both to find
the exact end of the function by looking for the return opcode and to find the offsets of the
pointers to be relocated.

For Dyngen to be able to read this information from an a.out file, a number of functions
and parts of functions had to be implemented. Most of these were rather simple as the
records in a.out files have a reasonable correspondence with those in other object file formats,
but I found that I needed to make some adjustments. For example, the a.out file includes
leading underscores in symbol names defined in C code, which Dyngen does not expect so
they have to be removed. As symbol sizes are not stored in the symbol table, these are
computed as the distance to the next symbol. This is not entirely accurate, as functions are
padded so as to be aligned on four-byte boundaries, but this fixed by searching for the return
opcode at the end of the function and adjusting the size afterwards. The size of functions is of
particular importance, because the function bodies are glued together, which means that the
return opcode must be chopped off in order for code generation to work.

The most difficult part of getting code generation to work is not to read the data in a.out
but to properly apply it. Unfortunately, the way in which relocations work in the GCC variety
of the MINIX a.out format is not well-documented. I found that in the object file containing
the code fragments, there are several kinds of relocation that must be processed in different
ways. This depends on (1) whether the pointer is relative to the program counter or is an
absolute address and (2) whether the symbol being relocated is defined in the same object file
or is external. Relocations relative to the program counter need to be adjusted for the address

47

pointed to as well as the location after copying, while absolute pointers only need correction
for the former. For the relocations which refer to a symbol declared in the same object file, the
value of the symbol is added by the compiler. In these cases, a pointer to the section it is in
should be added rather than the value of the symbol itself.

Changes related to networking

Support for virtual networks in QEMU has been expanded in the MINIX port to make sure
that at least the same level of functionality is available on typical MINIX installations as on
Linux systems. Changes to ensure this include an implementation of the platform dependent
TAP networking mode for MINIX as well as a new program called qemu-vswitch. As these
changes are really additions rather than changes of existing functionality, they are discussed
at length in section 3.4.

As was discussed in the section on general issues, ioctl control codes and functions related
to networking do not always behave as they do on other operating systems. This causes the
SLIRP library, which is used to provide virtual network support without needing root
privileges, to function badly even though it does compile. Without adjustments, UDP works
most of the time but client TCP connections are often closed due to errors occurring in the
SLIRP library. The errors which have been corrected, of which some have been discussed
before in the section on general issues, are the following:

● The SLIRP library uses the recv call on TCP connections and this functionality has not
been implemented in MINIX; as flags were never specified, the recv call was
equivalent with the read call in all cases and replacing it improved the situation;

● The FIONREAD ioctl control code is used to determine the size of incoming packets;
MINIX defines this control code but does not implement it for UDP sockets. QEMU
uses the control code without checking for errors, resulting in the variable receiving
the number of bytes having an undefined value afterwards. This causes random
behaviour which is correct most of the time but not all of the time; I finally found this
out because negative buffer sizes were being passed to the recvfrom function. I fixed
this by using a default value of 65 535 on MINIX. This does not introduce a limitation
on packet sizes as network packets cannot be this large. Error checking was also added,
even for the non-MINIX case.

● MINIX does not support the SO_TYPE socket option, which is used to determine
whether the socket associated with a file descriptor uses UDP or TCP. To be able to
find this out on MINIX, the NWIOGTCPOPT and NWIOGUDPOPT control codes are used
instead to test the socket. If the former is sent using ioctl, it returns information for a
TCP socket and fails with the code EBADIOCTL for a UDP socket; if the latter is sent, the
results are the other way around.

● The SO_REUSEADDR and SO_OOBLINE socket options are also not implemented in the
MINIX TCP driver even though they are specified in the header files. The setsockopt
function fails if these options are specified, which causes several QEMU features not to
work. Fortunately, these options are not essential and the corresponding calls are
simply removed on MINIX.

48

Miscellaneous changes

Dealing with failed memory allocations

When testing QEMU, it turned out that saving a screen dump often caused it to crash with a
segmentation fault. After such crashes, mdb showed the code segment to be completely
overwritten with apparent garbage up to the instruction pointer. Screen dumps are produced
by allocating an additional buffer, writing the current screen image to that buffer using the
default screen update functionality and then saving the contents of that buffer to a file. Since
in MINIX the amount of memory available for process is fixed in advance using chmem, it is
quite normal for the memory allocation step to fail at high resolutions. In typical operating
systems, where memory is dynamically assigned to processes, this rarely happens. QEMU did
not consider this possibility and wrote the image to the pointer returned by malloc, which was
NULL as the memory allocation had failed. Since in MINIX NULL is a valid pointer referring to
the start of the code segment, the problem would only show after the image rendering code
had overwritten itself.

After discovering this issue, I have searched the QEMU source code to find out whether
there were more unchecked memory allocations and found many. Since most of them only
allocate small chunks of memory, their failure would most likely go unnoticed; the functions
at the start of the address space are used for initialization and not typically called during
normal execution. This makes them even more of a problem than larger memory allocations;
the simultaneous use of the start address space could lead to data corruption without the user
noticing it. For this reason I defined a macro MALLOC_CHECK which checks whether the last
memory allocation succeeded and exits the program with an error message if it failed. This
should prevent further issues from going unnoticed.

Determining the size of removable media

QEMU allows the user to let a virtual machine access a physical storage device directly by
specifying its device file as an argument to the -hda, -hdb and -cdrom options. To properly
emulate the device, QEMU needs to find out its size. This is a platform-dependent operation:
on BSD and Solaris the DIOCGMEDIASIZE and DKIOCGMEDIAINFO ioctl codes are used, respectively.
On other systems, the lseek function is used with the argument SEEK_END to return the
address of the last byte. On MINIX, none of these approaches works for CD-ROM drives. This
originally caused QEMU to think the disk was zero bytes in size, causing emulation of the
CD-ROM drive to fail. I use the DIOCGETP control code instead to get size of CD-ROMs on
MINIX. This currently always returns 800 MB for ATAPI devices, as specified in the
atapi_open function in drivers/at_wini/at_wini.c. This is not really a problem, as QEMU is
satisfied with an upper bound. Using the control code seems to be a better solution than
simply using some constant; this would fail if, for example, MINIX starts supporting DVD
drives in the future.

Implementation of missing library functions

A number of library functions that are missing in MINIX had to be implemented. As
mentioned before, compilation was possible without warnings because I provided headers for
them. During the linking phase one can see which functions are really being used, and I
implemented these functions whenever their use could not easily be eliminated. These

49

functions are localtime_r, realpath, strtoull and a number of floating point arithmetic
support functions. I discuss each in turn.

The localtime_r function returns the current time in the configured time zone. In this
sense it is identical to the localtime function, which MINIX does implement. However, this
function stores the result in a buffer passed to it by the caller, while the localtime function
returns a pointer to a static buffer. This means that the localtime function is not re-entrant.
This is a problem when signal handlers use the function or when multiple threads use it. I
implemented it by calling the localtime function and copying its result to the caller-supplied
buffer. To avoid re-entry, signals are blocked using the sigprocmask function so signal handlers
cannot call the function before the buffer is copied. As MINIX does not support multi-
threading, this is sufficient to safely implement localtime_r.

The realpath function builds an absolute and canonical path by resolving symbolic links
and references to the current or parent directory. MINIX does not implement this function, so
it has been implemented from scratch on top of available operating system functions. First,
the current working directory, obtained using getcwd, is added if the path is relative. Next,
lstat is used for each component to determine whether it is a symbolic link. Link targets are
resolved using readlink.

MINIX does not support provide support for 64-bit integer arithmetic. The GCC compiler,
on the other hand, does support it. This means that 64-bit types can be used in
computations, but that support functions are missing. One such support function is strtoull,
which parses a string representing an integer and returns the resulting unsigned 64-bit
integer. Again, I implemented this function from scratch.

MINIX does not support floating point arithmetic. Like 64-bit integer support, GCC
generates code to emulate floating point operations using integer instructions but some
support functions are missing. In particular, I implemented a number of rounding functions,
reduced accuracy functions, comparison macros and a classification function.

Rounding functions include fegetround, fesetround, nearbyint, remainder and rint. The
first two functions get and set the rounding mode in the floating point unit (FPU) control
word. This influences subsequent rounding operations, including those involved in
representing answers as floating point numbers. I did not find a way to modify rounding
behaviour in the FPU emulation code, so my implementation only affects the other three
rounding functions I implemented. This is sufficient in practice, as the rounding direction is
much more important when rounding to integers than when rounding to representable
floating point numbers. The other rounding functions have been implemented by directly
manipulating the fields of the IEEE 754 floating point type, as specified by Intel [9].

Reduced accuracy functions, such as sqrtf, use the float type rather than the double type to
represent arguments and results. Some of these functions are missing in MINIX even though
their counterparts with double accuracy are present. I implemented these functions simply by
using the double accuracy functions, which results in GCC implicitly converting the
arguments and the result. Emulating 32-bit floating point arithmetic directly would be more
efficient than this solution, but I expect that these functions are rarely used so that it does not
matter much in practice.

Comparison macros and the fpclass classification function are mostly used to deal with
floating point values that are not ordinary numbers. Examples are infinities and NaN (not a

50

number) values used to signal error conditions. The comparison macros are used to make
sure that NaN values are not compared directly, but rather that any comparison involving
them is false. This is based on the fpclass function, which parses the fields of the floating
point value specified to determine what kind of value it is.

Support for 64-bit integers in format functions

QEMU occasionally uses 64-bit integers, which are at times also passed to printf and related
functions to be displayed. Unfortunately, the MINIX implementations of these functions
cannot deal with 64-bit integers, which means they cannot parse the format strings referring
to them and consequently interpret their arguments incorrectly. Rather than completely re-
implement these functions and change all references to them, I opted to replace the _doprnt
function which is the core of their MINIX implementations. This function takes the format
string, a variable argument list and a stream object as parameters. It parses the format string,
inserts the arguments with the appropriate formatting and prints the result to the specified
stream. I copied the source code for this function from lib/stdio/doprnt.c and modified it to
be able to handle 64-bit arguments. The main function of QEMU is modified to call
doprnt64_activate, which overwrites the _doprnt function with a jump to my implementation
_doprnt64. As a result, the entire family of printf functions can deal with the ll format prefix
that specifies a 64-bit argument. The functions described here can be found in qemu/qemu-
0.8.2-minix/minix/doprnt64.c on the CD-ROM that comes with this thesis.

Missing functionality

Unfortunately, not all functionality could easily be ported to MINIX and some had to be
disabled. This section summarizes the missing features in QEMU when running on MINIX.

COW disk image file format

QEMU supports a number of different file formats for storing disk images. These file formats
allow for efficient storage of virtual disk images by only storing those disk blocks that are in
use. Some also provide additional features, such as compression and encryption. Multiple
formats are supported to allow for easy interchange of virtual machines between different
emulators. Besides its native QCOW format, QEMU also supports disk images used with
Bochs, Microsoft Virtual Server and VMWare. It also deals some special cases, such as the
RAW file format in which the disk contents are stored in the file verbatim. This allows for
sharing real disks, disk partitions and CD-ROMs with the virtual machine. Each format is
implemented as a block driver within QEMU. These drivers have a common interface and
individual drivers can easily be disabled.

Unfortunately, one of the block drivers depends on memory mapped files. Since MINIX
does not support virtual memory, it does not supply the mmap system call needed for this. The
affected driver is the COW driver, the predecessor of the QCOW format and QEMU's former
default block driver. This driver has been disabled on MINIX. This should not be much of a
problem as old COW images can easily be converted to QCOW using the qemu-img utility.
Support for this driver is also missing on Windows, which confirms the fact that this driver is
not essential. It would be possible to implement a driver for this file format that does not use
memory mapping, but this does not seem to be worth the effort for a legacy feature like this.

51

Linux-specific features

Some QEMU features are available only on Linux and are therefore not present in the MINIX
version. These features include use of a high-resolution timer device and redirection of USB
devices so that the virtual machine can interface with them directly. Since neither a high-
resolution timer not USB support are present in MINIX, it would not be meaningful to
include these features unless substantial changes are made to the MINIX operating system.

Networking-related features

The IP_MULTICAST_LOOP socket option causes multicast messages to be sent to the loopback
network interface, which allows multiple instances of QEMU on the same machine to
communicate with each other using UDP. This socket option is not supported on MINIX. The
result is that UDP-based virtual networking may not work well if multiple instances are
running on the same host. Fortunately, this can easily be worked around by the user by
connecting them using TCP instead. The qemu-vswitch program can be used in this case as an
easy way to connect many virtual machines together.

Out of band data on TCP sockets is not supported by the MINIX network driver either. The
result is that, if user mode networking is used, out of band data cannot be sent or received.
This should not be a major issue, as use of out of band data seems to be very uncommon in
practice. Moreover, the issue can be worked around by using ethernet tunneling or qemu-
vswitch to connect to the network. In either case, the MINIX TCP/IP stack is bypassed and
the virtual machine is free to implement out of band data.

Sound support

One feature that is missing entirely is sound support. To play sound, QEMU relies on SDL.
When initializing the sound subsystem, SDL fails due to lack of support for threading
primitives. These are required as SDL uses a separate thread to send sound output, which
avoids the need to use a timer or to regularly call a function to fill the sound output buffer.
Since MINIX does not implement threads and moving the sound thread into a separate
process would be outside the scope of this project, there was no simple way to get the sound
to work.

Because SDL originally failed due to the lack of a MINIX sound driver rather than missing
thread support, I have worked on some sound issues in the hope to resolve these issues. In
particular, I have created a MINIX sound driver for SDL and debugged timers in QEMU due
to this issue. The former may be useful for those who wish to further pursue enabling SDL
sound in MINIX, although it should be noted that I was not able to test the SDL sound driver
due to the lack of threads. The latter revealed the issue that QEMU runs extremely slowly
when sound is enabled in deterministic mode. I found this to be caused by the fact that the
QEMU sound system creates a timer which is set to expire immediately. When using the
setitimer function, this results in the minimum possible delay as determined by the clock
frequency, but in deterministic mode the alarm expired after executing a single basic block.
As a solution I set the minimal time-out to 1

1024 of a second, QEMU's preferred clock
resolution when running on Linux. This issue is relevant not just for the deterministic mode,
but would also increase performance if the MINIX kernel were to be made tickless. Further

52

profiling of the timer callbacks revealed that no other functions use exceptional numbers of
time-outs.

3.4 - Features added in QEMU for MINIX

Curses support

Running QEMU under the X environment in MINIX is somewhat harder than on similar
operating systems due to memory limitations. Since MINIX does not support virtual memory,
a fixed amount of memory is allocated each time a process is created or an executable is
loaded. The amount allocated is set using the chmem utility and should be sufficient for the
maximum amount of memory the process ever uses. Memory is not swapped out to disk, so
the entire allocation is backed by physical memory. Moreover, memory allocations need to be
contiguous because paging is not used. Therefore memory fragmentation may make it
impossible to allocate large blocks even if the sufficient memory is available. In sum, MINIX
typically requires more physical memory than do other operating systems.

Both X and QEMU need to allocate large buffers, so running them together can be hard on
systems with little memory. Some X video drivers require buffers to back video memory, while
QEMU uses a large amount of memory to store the contents of the virtual machine memory.
Therefore QEMU's chmem value determines the amount of memory that can be assigned to a
virtual machine. This leads to the conclusion that X reduces the memory size available for
virtual machines, so it is desirable that QEMU can be run without X.

To be able to run QEMU without X, I added support for the Curses library. This library
allows QEMU to present the display of the virtual machine on a console, as long as it uses a
text rather than graphical display mode. This support has been merged in from the QEMU
package for Debian Linux. Besides allowing virtual machines to have larger memories, this
patch also make it possible to use QEMU on a MINIX machine over a TELNET connection. To
use text mode QEMU, the -curses command line switch can be specified.

Memory allocation recommendation

As explained before, memory availability is a limitation for the memory size of virtual
machines. If the value assigned with chmem is too low, QEMU fails when allocating memory for
the virtual machine. If it is too high, QEMU may not run and less memory remains for other
programs. Therefore it is important that the chmem allocation be properly adjusted to the
largest virtual machine size used in practice. Therefore I added code in the qemu_vmalloc
function, which is a malloc wrapper used for several large allocations. If the malloc call fails, it
prints a message recommending the use of chmem and suggesting an estimate of the amount of
memory to be assigned. Normally this amount is the memory size of the virtual machine plus
eight megabytes. This is an estimate and, although it works for the virtual machine sizes I
have tested, one cannot be sure that it is always correct. Therefore, the total amount of
memory required after the allocation plus one megabyte is suggested instead whenever it is
higher. This provides a fall-back if the user uses the other suggestion and it turns out to be too
low.

53

Networking

An important QEMU feature is the ability to emulate network adapters as well as a virtual
network. This is typically the easiest way to exchange data between virtual machines and the
host machine and it is obviously required for the virtual machine to get access to the Internet.
Efficient network emulation is especially important if the virtual machine is used to run
server programs, which is one common use of virtualization. QEMU supports several
different ways to create virtual networks, each of which has their own advantages and
disadvantages. I have also created an additional server program called qemu-vswitch that
allows for more efficient and secure network emulation on MINIX.

I will discuss the various approaches that can be used to connect QEMU running on MINIX
to the network in turn. A summary of the advantages and disadvantages discussed here is
provided in Table 2.

User mode networking

QEMU can emulate a network even if the user does not have root privileges. It does this by
translating network packets sent from and to the virtual machine into UDP and TCP socket
operations on the host machine. It emulates a DHCP server to provide the virtual machine
with an IP address and a gateway to give it access to the local area network. This effectively
places the virtual machines behind a network address translation (NAT) router.

54

User mode
networking

Ethernet tap qemu-vswitch
run from QEMU

qemu-vswitch
run at boot time

Requires root
permissions

No Yes Yes For configuration but
not for use

Topology Behind NAT router Connected directly to
LAN

Behind switch Behind switch

Limitations Cannot act as server
due to NAT
translation; can only
use UDP and TCP (no
ICMP); subject to
limitations of MINIX
network stack, which
means no out of band
TCP data

None Fork requires twice
the memory assigned
to QEMU to be
available temporarily

None

Ease of use Default, no
configuration needed

Command-line switch Command-line switch Needs to be set up in
advance

Security
issues

None VM can eavesdrop on
host and spoof
physical machines

Optional protection
against eavesdropping
and spoofing by VM

Optional protection
against eavesdropping
and spoofing by VM
(decided on by root)

Performance VM processes only
directly addressed
packets

VM has to process all
packets, slowing it
down with heavy
network traffic

VM processes only
directly addressed and
broadcast packets

VM processes only
directly addressed and
broadcast packets

Table 2: Advantages and disadvantages of several virtual networking approaches supported by
QEMU on MINIX

Unfortunately, there are certain restrictions that come with emulating the virtual network
using host TCP and UDP sockets. For example, it is not possible for the virtual machine to
accept incoming connections and it is not possible to send and receive ICMP packets. The
former limitation implies that the virtual machine cannot function as a server, which is one
important use of virtualization. It also makes FTP, a useful tool to exchange files between
virtual and physical machines, harder to use. The latter limitation implies that network
diagnosis tools such as ping and traceroute generally do not work properly. To mitigate this
problem, QEMU converts ICMP ping packets into UDP echo packets; this allows ping to be
used if the target host runs an echo server. An additional disadvantage is that the virtual
machine uses the host networking stack and is therefore subject to its limitations and bugs.
When using MINIX as a host operating system, this means that it is not possible to use TCP
out of band data as this is not supported by the MINIX TCP implementation.

User mode networking is the default approach if no networking command line switches
have been specified. It can also be enabled explicitly by using the -net user command line
switch.

Ethernet tap

Another, more flexible way to link the virtual machine to the local area network (LAN) is to
forward ethernet packets directly. This means that packets sent by the virtual machine are
sent out using the physical network interface and that incoming ethernet packets are
forwarded to the virtual network interface. As QEMU and the host operating system do not
change any headers, there are few restrictions on the protocols used in those packets. This
allows more freedom for the virtual machine. For example, it allows the use of ICMP by the
ping and traceroute utilities. Moreover, the virtual machine can obtain its own IP address in
the LAN, typically using the same DHCP server used by its host. This means that address
translation is not needed and all packets can be forwarded to the virtual machine correctly.
This allows it to accept incoming TCP connections and act as a server.

On Linux, the ethernet tap is implemented using the TUN/TAP device named
/dev/net/tun. This device allows one to create a virtual network adapter which is either an IP
tunnel (TUN) or an ethernet tap (TAP) [15]. The former function forwards IP packets between
the physical and virtual network adapters according to IP routing rules, while the latter
forwards all ethernet packets. Both functions are supported in MINIX but using different
devices, respectively /dev/ip and /dev/eth. QEMU uses the TAP function, so I made it open
the /dev/eth device. After proper configuration QEMU can use this device the same way it
uses the TUN/TAP device in Linux. This configuration consists of telling the /dev/eth device
to accept any incoming packet regardless of MAC address and make a copy of it available to
QEMU. As packets from all MAC addresses are accepted, packets sent to the MAC address of
the virtual machine can be received. As each packet is copied, other processes including the
normal host network stack still receive every packet and are not affected.

When used on Linux, a setup script is needed to set up the TUN/TAP device correctly. On
MINIX, QEMU will perform this configuration itself and specifying the -net tap command
line option is enough to use ethernet tap networking. Unfortunately, this does require root
permissions as by default only the root user is allowed to open /dev/eth. This approach also
has the disadvantage that every incoming packet is sent to the virtual machine and packets
sent out by the virtual machine are accepted without restrictions. This has two implications:

55

● The virtual machine has to process every incoming packet, even if it is not relevant to
the virtual machine;

● The virtual machine can eavesdrop on all host network traffic and can send out
packets that seem to originate from it or from other computers in the network.

The former issue can slow down emulation, especially if the host machine generates much
network traffic. The latter issue implies that, if the programs running on the virtual machine
are not trusted, network security may be compromised unless one uses cryptography to
protect local network traffic.

Virtual switch

As can be seen from Table 2 and from the previous sections, both user mode networking and
ethernet taps have problems. The former mostly suffers from limited functionality on the
virtual machine and the latter requires root permissions and may provide bad performance
and security. To make the situation better on MINIX, I have implemented a third way to
provide the virtual machine with access to the network. This is a separate program called
qemu-vswitch, which opens the /dev/eth device as QEMU instances normally would if the
ethernet tap mode were used. This program allows instances of QEMU to connect to it using
local TCP connections. This functionality is built into QEMU by default, as it is also used for
multiple QEMU instances to communicate with one-another.

I will first discuss the way in which the virtual switch is implemented and then consider the
implications of using the virtual switch rather than the network emulation features originally
present in QEMU.

Implementation

Figure 10 shows a situation in which two instances of QEMU are using qemu-vswitch and two
other host user processes are also using the network. Clusters of adjacent rectangles represent
host processes, with each rectangle representing some functionality in the process it belongs
to. Lines show interprocess communication and data is exchanged within processes wherever
rectangles are adjacent. The illustration shows that qemu-vswitch taps packets from the inet
server at the ethernet level, while the host network stack still operates normally. Even though
multiple instances of QEMU are running, only one instance of qemu-vswitch and one ethernet
tap are needed. When a packet comes in, the virtual switch decides which virtual machines
need it and forwards it over the appropriate local TCP connections. Packets are routed using
the MAC address, so there is no need to use specific higher-level protocols. Each guest
operating system uses its own network stack to handle these packets when they arrive at its
emulated network interface card (NIC).

56

Figures 11 and 12 show how the virtual switch routes ethernet packets. Two instances of
QEMU, labelled “qemu 1” and “qemu 2,” are running and have connected to the virtual switch.
The first virtual machine has been running for some time, while the second one has just been
started and is initializing its network stack. For each instance of QEMU connected to it, qemu-
vswitch builds a list of MAC addresses by storing the source addresses of outgoing ethernet
packets. At this point the MAC address of the first virtual machine is already known
(52:54:00:12:34:56), but the second virtual machine has not sent any packets yet and therefore
its MAC address (52:54:00:12:34:57) is not known yet.

To obtain an IP address, the second virtual machine will eventually broadcast a DHCP
discover packet. This packet has the source MAC address of the virtual machine
(52:54:00:12:34:57) and its destination is set to the broadcast MAC address (ff:ff:ff:ff:ff:ff).

57

Figure 10: Processes involved in network emulation using qemu-vswitch

qemu

Guest kernel
Emulated NIC

qemu-vswitch

Guest ethernet driver

Guest user
process

Guest IP driver
Guest TCP driver

Host ethernet driver
Host IP driver

Host TCP driver

Guest user
process

Host user
process

Host user
process

Host kernel

Host NIC, network

read/write data stream from/to /dev/tcp
read/write IP packets from/to /dev/ip
read/write eth packets from/to /dev/eth
I/O system calls
I/O instructions
function calls

read/write eth packets from/to
local TCP connection

read/write eth packets from/to /dev/eth;
incoming packets are duplicated

I/O system calls

I/O instructions

inet

qemu

Guest kernel
Emulated NIC

Guest ethernet driver

Guest user
process

Guest IP driver
Guest TCP driver

Guest user
process

Figure 11: qemu-vswitch routing an outgoing DHCP
discover packet

qemu 1
52:54:00:12:34:56

qemu-vswitch

Host ethernet driver

Host user
process 2

Host user
process 1

Host NIC

Host TCP/IP drivers

qemu 2
52:54:00:12:34:57

52:54:00:12:34:56 (unknown)

(promiscuous)00:1d:09:b9:05:5c

Switch
Other PC - 00:11:43:39:cd:de

Router - 00:17:3f:dc:f2:01

qemu-vswitch stores the source MAC address and will be able to deliver any future ethernet
packets correctly. The arrows in Figure 11 shows how the DHCP packet is routed; as the packet
is broadcast, the packet is forwarded in all directions. This causes the packet to be delivered
to the first instance of QEMU, the host TCP/IP stack, any other computers on the local area
network and the router. In a typical home configuration, only the router would be running a
DHCP server and all other receivers would discard the DHCP packet because they do not
listen at the port number for DHCP.

When the router receives the DHCP discover packet from the virtual machine, it sends
back a DCHCP offer packet indicating the IP address it allocated for the virtual machine.
Figure 12 shows how this packet is routed. This time, the source MAC address is that of the
router (00:17:3f:dc:f2:01) and it is sent directly to the virtual machine (52:54:00:12:34:57). By
now, the physical network switch knows where it should send a packet with this MAC
address, so only the host machine receives it. The host network stack forwards the packet to
qemu-vswitch, but the host IP driver does not process it as the destination MAC address does
not match the MAC address of the network adapter. qemu-vswitch uses its list of MAC
addresses to determine where to deliver this packet, so only the correct virtual machine
receives it.

Usage

The virtual switch program can be run in two ways:

● If QEMU is started with the -net vswitch command line argument, it starts qemu-
vswitch and connects to it automatically. A file is created in /var/run to prevent the
program from running twice, so that all instances of QEMU connect to the same
virtual switch. This directory should be (but is not currently) cleaned up at boot time.

● The system can be set up to run qemu-vswitch at boot time. Users then start QEMU
with the -net socket,connect=localhost:5768 command line option to connect to it.

The former approach is easy to use, but it requires root privileges for the user starting QEMU.
Memory usage is another issue. QEMU typically has much memory assigned to it as it needs
space for the memory of the virtual machines. As on other POSIX systems, executing a

58

Figure 12: qemu-vswitch routing an incoming DHCP offer
packet

qemu 1
52:54:00:12:34:56

qemu-vswitch

Host ethernet driver

Host user
process 2

Host user
process 1

Host NIC, network

qemu 2
52:54:00:12:34:57

52:54:00:12:34:56 52:54:00:12:34:57

(promiscuous)
Host TCP/IP drivers

Switch
Other PC - 00:11:43:39:cd:de

Router - 00:17:3f:dc:f2:01

00:1d:09:b9:05:5c

program on MINIX involves first calling fork and then exec. In between the memory claimed
by QEMU is doubled, which may be a problem on many MINIX systems. This will be resolved
if a future version of MINIX would use copy-on-write pages to implement fork.

The latter approach requires some configuration by the root user, but the user starting
QEMU does not need root privileges. When no virtual machines are connected to it, qemu-
vswitch only listens for incoming TCP connections and does not keep the /dev/eth device
open. This means it uses very few resources when running in the background.

As qemu-vswitch filters packets and only delivers them where they are needed, virtual
machines process fewer packets than they do when ethernet tap networking is used.
Therefore better performance can be expected, especially if the host machine experiences
heavy network traffic. If the -f command line switch is specified when running qemu-vswitch,
it blocks outgoing packets specifying a MAC address that is assigned to a physical device. This
means virtual machines cannot spoof packets from other physical machines. This also means
that they cannot get packets from these MAC addresses delivered to them, so they cannot
eavesdrop on physical machines either. Therefore, security can be better than with ethernet
tap networking.

Opcode histograms

To be able to test QEMU's performance, I ran a number of benchmarks to find out which CPU
instructions have most performance impact. To make this easier, I have created a feature to
measure the number of times each type of instruction is executed. By inserting counting code
into the generated code, it is possible to figure out how many times each instruction was
executed after a benchmark. To make the C compiler generate the counting code in the same
way as the regular code, an operation called op_inc_opcode_histogram is created and inserted
before each other instruction when profiling is enabled.

As keeping track of the histogram causes the performance of the generated code to
decrease, it is only done whenever enabled by specifying the --enable-opcode-histogram
parameter when configuring the build and by the guest program doing the benchmark.

To allow the virtual machine to communicate with the host while making minimal changes
to QEMU, I decided to modify the CPUID x86 instruction. This instruction is normally used to
check for the presence of CPU features. Normally, the EAX register indicates what information
is to be queried and information is passed back in the EAX, EBX, ECX and EDX registers. I added a
function with a completely different value for EAX, the ASCII string “QEMU,” to avoid
interfering with the normal use of this instruction. To allow the benchmark program running
on the guest to control when measurement is enabled and process the results of the
measurements, three functions are added: one to start measurement, one to stop
measurement and one to fetch the instruction histogram. A more detailed description of
these operations is included in Table 3.

59

Operation Start measuring Stop measuring Fetch histogram data

Instruction CPUID CPUID CPUID

EAX in "QEMU" "QEMU" "QEMU"

EDX in "hist" "hist" "hist"

ECX in "star" "stop" "fetc"

EBX in -1 -1 Index of first byte to fetch

EAX out Data: first dword

EBX out 0 Number of opcodes in
histogram

Data: second dword

ECX out 0 Histogram buffer size Data: third dword

EDX out Data: fourth dword

CF out 0 0 0

Side effects Measurement enabled

Code generation buffer
flushed

Histogram data cleared

Measurement disabled

Code generation buffer flushed

Table 3: Operations used by the guest to control the opcode histogram feature

If a program which expects to be running on QEMU with histogram support is running on
the bare hardware or a version of QEMU compiled without support, it is important that it is
able to detect whether the call succeeded. Running on the bare hardware, the effect of CPUID
on the EAX, EBX, ECX and EDX registers is undefined if the value in EAX does not correspond with
a known call, so these standard registers cannot be relied on for this purpose. Instead, QEMU
clears the carry flag (CF) to indicate that the CPUID call was intercepted. As CPUID normally
does not change the flags, it is possible to detect whether the call succeeded or not if one sets
the carry flag in advance.

A typical benchmark program is expected to first call the “start measurement” function by
setting the registers as described in the table and then issuing a CPUID instruction. If the carry
flag is cleared, this indicates that the program is running inside QEMU and that the opcode
histogram feature was enabled before building it. After the benchmark has been run, the
“stop measuring” operation is called and the buffer size returned in ECX allows the program to
allocate an adequate buffer. For each 16-byte block, the “fetch histogram data” operation is
used and the data is copied from the registers into the buffer. This buffer contains an array of
64-bit unsigned integers, each counting the number of times an instruction was executed
since measurement was started, followed by a list of null-terminated strings indicating the
names of the instructions. This data allows the program running in the guest machine to
present the results to the user or store them in a file.

Running deterministically

At times, it is convenient if a virtual machine behaves in exactly the same way when started
from the same state multiple times. To be able to better debug QEMU, I modified the
program in such a way that this is possible. If the --enable-deterministic option is passed to
the configuration script before building QEMU, this results in the following changes:

60

• The guest system timer is set to a fixed value—midnight January 1st 2000—when the
virtual machine is booted;

• The guest system timer increases as a linear function of the number of virtual machine
instructions executed rather than based on real time;

• The moment at which timer events are fired occurs after a fixed number of virtual
machine instructions, causing the system timer to also fire interrupts at fixed positions
in the guest code.

It should be noted that user input and incoming network packets may still result in
nondeterministic behaviour, but in cases where this matters these can be avoided by
disabling network support (using the -net -none parameter) and not providing input.

The deterministic running mode is implemented by counting and checking the number of
virtual instructions executed after each basic block. Although slows down the generated code
somewhat, an advantage is that it avoids the need to use setitimer. This is beneficial if the
guest operating system sets the interrupt timer at a high rate, since it greatly reduces the
number of context switches because fewer signals are received. It also makes the timing of
guest timer interrupts much more accurate, allowing clock resolutions significantly higher
than that of the host without clustering interrupts together. One disadvantage of this
approach is that the rate of change of the system time of the guest may depend on the speed
of the host. This is compensated to some extent when the guest is idle, by adjusting wait
times depending on the degree to which the virtual machine time runs ahead of or lags
behind real time.

When QEMU runs in deterministic mode, it is no longer possible for benchmark programs
running on it to obtain a meaningful estimate of their runtime because they do not have
access to a source of real time. To still allow benchmarks to be run in this situation, I created a
configuration option --enable-host-time. This option, like the opcode histogram discussed
previously, creates a new function for the CPUID instruction. This function reads the time as
reported by the RDTSC instruction and the gettimeofday system call on the host. Both are
included because the former has a much higher resolution, while the latter is better
corresponds with real time. It should be noted that this feature can also be used when QEMU
does not run deterministically. Even though timekeeping by the guest is possible in this case,
it is more accurate on the host as timer interrupts may not be delivered at exactly the right
time. Moreover, it increases comparability of benchmark results to use this feature both when
running deterministically and otherwise.

61

Operation Read host time

Instruction CPUID

EAX in "QEMU"

EDX in "time"

ECX in 0

EBX in 0

EAX out Host time stamp counter (low-order 32 bits)

EDX out Host time stamp counter (high-order 32 bits)

ECX out Host real time (tv_sec)

EBX out Host real time (tv_usec)

CF out 0

Diagnostics In the (unlikely) case gettimeofday fails, both EBX and ECX are set to zero

Side effects Measurement enabled
Code generation buffer flushed
Histogram cleared

Table 4: Operations used by the guest to read the host time

Simple profiling of QEMU

Besides the fact that generated code is likely to be considerably less efficient than the original
code, QEMU itself also adds some overhead. In particular, it has to generate code, handle
alarm signals to emulate timer hardware, check for input and produce output. To find out
how much time is spent on these activities allows one to get an impression on what part of the
time is spent productively and, in particular, whether there is a difference in this regard
between MINIX and other host operating systems. In this way, it can be useful to be able to
find performance bottlenecks in QEMU. The advantage of this approach over ordinary
profiling is that it causes only very little overhead, which means that the observed run times
are better estimations of real-world performance. The disadvantage is that it is much less
precise in pinpointing performance bottlenecks, but this is not needed if one only wants to
investigate how much of the time is spent productively.

To determine how much time was spent on each activity, I added calls to a new function
qemu_profile_set_mode whenever the activity changes. These calls are conditionally compiled
to allow profiling to be enabled when configuring the build. This can be done using the –-
enable-qemu-profile configure script switch. The function keeps track of the number of CPU
ticks since the last call, which allows for very accurate time measurement. It should be noted
that the number of CPU ticks per second need not be constant on modern power-saving
CPUs, but it is in MINIX as this operating system currently does not implement power
management. When QEMU exits, an overview of the percentage of time spent on each
activity is printed to the standard output.

3.5 - libSDL
To be able to run QEMU with graphics support, the libSDL library is required. This library is a
platform-independent intermediary between an application and a graphical shell. This library

62

was not yet available on MINIX 3. Fortunately, libSDL uses the GNU Autoconf library, which
makes it highly portable. Moreover, other software using Autoconf can re-use the changes I
made to the configuration files supplied with libSDL. Besides QEMU, the libSDL library is
also useful for numerous other programs that use it.

In this section, I discuss changes made to libSDL to allow it to be used on MINIX 3. The
source code and a patch that shows the differences are provided on the CD-ROM that comes
with this thesis, stored in the /SDL directory. Changes are discussed file by file.

The configure and configure.in files

The configuration files are generated by GNU Autoconf. They prevent the libSDL source code
from using features not present on the target platform. This is done by testing for features
rather than based on operating system and compiler versions. This is very useful in this case,
as this means that adding a new operating system—MINIX 3—does not require much effort.
There are two configuration files—configure and configure.in—both of which have been
changed in the same way. These changes were only small and few, which bodes well for
porting other projects that use GNU Autoconf. The version of libSDL which I ported (1.2.13)
uses GNU Autoconf 2.61 and changes may be slightly different for other versions.

The first change that needed to be made was adding a definition of the _POSIX_SOURCE
precompiler symbol to the BASE_CFLAGS variable. This is needed because some symbols in the
MINIX 3 header files only get declared if this symbol is declared. In particular, this is the case
for nearly all functions related to signal handling. The _POSIX_SOURCE symbol is defined only
when compiling on MINIX 3, instead of the _GNU_SOURCE symbol which used on other
platforms. On these other platforms, _GNU_SOURCE implies _POSIX_SOURCE, while on MINIX 3 it
is not used.

The configuration scripts perform a test to determine the maximum length of the
command line. In MINIX—as on many other operating systems mentioned in the file—this
test fails. The reason of this failure is the process running out of memory before the
maximum command line length is reached. This is due to the restrictions posed by each
process having a fixed amount of memory. Like on the other operating systems for which the
test is known to fail, I made the script skip the test and use the default value of 8 kb.

Code is added to detect the MINIX operating system name as provided by the uname
command. This is needed to avoid an error message about the operating system being
unknown. Due to its POSIX compliance, MINIX is added to the list of Unix-like operating
systems, performing the same feature check tests as for example Linux, BSD and Solaris.

Finally, SDL_STATIC_LIBS variable is set to supply the location of the X11 static library when
compiling libSDL. This is needed because MINIX 3 does not support dynamic loading, which
is common on other operating systems. By including this compiler flag, the X11 libraries are
included directly into the libSDL library.

Changes to SDL files

GNU Autoconf takes care of most portability issues, resulting in very little need to make
change to the SDL files themselves. Only two more files required changes and those changes
were very minor. The include/SDL_platform.h file is changed to define the __MINIX__ symbol
when compiling on MINIX for consistency with other platforms. This symbol is used in

63

video/x11/SDL_x11events.c, where the sys/select.h header is included when running on
MINIX. As mentioned with the general portability issues, other platforms automatically
include this file whenever stdlib.h is used, so it is often needed to explicitly add it when
porting software to MINIX.

Build file

To be able to build libSDL with a single command, as is required for making a packman
package out of it, I have included a build.minix shell script. The configure script and the
makefile do most of the work, so this script is rather simple. It specifies the proper directories,
disables unsupported features and calls the configure script and the makefile. GCC is used to
compile libSDL since it is also used for QEMU. The object file formats for GCC and ACK—
although both forms of the a.out format—are incompatible so that the library can only be
linked with QEMU if it is compiled using GCC.

The build script disables three features: assembly routines, direct graphics access (DGA)
and Xi Graphics Miscellaneous Extensions (XME). The former two are performance
enhancements. The latter provides support for a proprietary X server by Xi Graphics. The
problem with the assembly routines is that they use the MMX and SSE instruction sets. Since
MINIX does not save the MMX and SSE registers at context switches it is not safe to use these
functions. Although they could be rewritten to avoid these instruction sets, little would
probably remain of their improved performance. DGA is another way to increase
performance, which allows the X client (QEMU in this case) direct access to the graphics
memory allocated by the X server. Hence the sockets interface that is normally used for
communication between the two can by bypassed. However, due to the lack of virtual
memory, it is not possible to make the shared memory available to the client. XME is not
supported because it uses threads, which MINIX does not support. This extension would not
be useful even if threads were available, because the X server that it interfaces with is not
available on MINIX. Hence, the changes may affect performance but do not reduce
functionality.

3.6 - Debugging QEMU
Debugging QEMU turned out to be hard because in many cases, errors only crash the
program a long time after they occur. In particular, errors in generated code often resulted in
jumps to random locations or in code being overwritten. If such problems happen, much
code may be executed before something goes sufficiently wrong for the program to crash. At
this point, the only possibility is to open the core dump file created by the crash and figure
out manually from the contents of the stack where the original problem was. Another
problem was a situation in which QEMU would hang so badly that it could only be ended by
sending it the SIGKILL signal, which does not produce a core dump. However, I have found
some strategies that helped me find bugs. These may also be useful in other porting projects
and are discussed in this section.

In general, one difficulty is the fact that the GNU debugger is not available, which means
that only the MINIX debugger mdb can be used. This utility is useful for analysing core dumps,
but has fewer features for debugging running processes and cannot read symbol tables
written by the GCC compiler. As a result, lines of the source code are not displayed with the

64

disassembled core file and addresses have to be looked up from the binary manually, using
the gnm utility.

The approaches described in this chapter eventually lead me to find several errors in the
emulation, including incorrect pointers being put in the generated code and a bug in the
floating point rounding functions I wrote. The problems that were hardest to find and solve
were the ones caused by MINIX itself. In particular, as has been noted in the section on the
MINIX patches, the flags register is sometimes set incorrectly after MINIX 3.1.2 returns from a
signal handler. Such errors require extensive analysis of core dumps resulting from them and
hence some of the approaches mentioned here are aimed mostly at making those core dumps
more readable. Another example is the setitimer implementation, which was disabled by a
number of library functions that used the old alarm function. The methods described here are
likely to also be useful for debugging other software if similar problems are encountered.

Causing crashes to occur early

One of the main difficulties with QEMU crashes is the fact that they often occur a some time
after the original problem. If, for example, a relocation in the generated code is processed
incorrectly, this often leads to a jump to or write at an incorrect address.

If QEMU incorrectly jumps to a address that contains valid code, then the result is quite
unpredictable. Commonly, incorrect jumps are caused by uninitialized function pointers,
causing jumps to the NULL pointer. While this address is invalid and its use causes a
segmentation fault on many operating system, this is not the case in MINIX. On the x86
architecture, this is solved by placing a UD2 instruction at the NULL pointer. This instruction is
guaranteed to cause an invalid instruction exception, causing QEMU to be terminated and a
core dump to be produced. A similar approach is possible for unused sections of the
generated code buffer. Here I use the breakpoint instruction, which has the advantage that it
is only a single byte long. This way, each address in the unused part of the buffer reliably
causes a breakpoint exception, which is fatal and produces a core dump if QEMU is not being
debugged.

The problem with incorrectly writing to some address is harder to detect. Although by
default MINIX separates executable code from data by placing them in different segments,
reducing the risk of overwriting code, this feature cannot be used by QEMU. The source code
is not compatible with the ACK compiler and the GCC compiler is not able to create a MINIX
binary which separates code and data. Moreover, this approach would not be suitable even if
it were available because it makes the execution of newly generated code impossible. As
described in the section on NULL pointers in MINIX, I created the mprotect system call for
MINIX. This system call is normally available on operating systems which support virtual
memory and allows one to restrict access to memory on a page-by-page basis. By protecting
the executable code against writing, the likelihood of an incorrect write being detected is
greatly increased. Both the static executable code and the dynamically generated code buffer
can be write-protected this way, the latter being temporarily removed while generating new
code. It should be noted that, although this feature was useful in the debugging phase, it has
been removed in the final version of QEMU because the calls to mprotect caused a
considerable slow-down and because mprotect is by default not available on MINIX. The
changes that need to be made to MINIX to add the mprotect system call have been described

65

previously and the source code is found on the CD-ROM in the minix/minix-3.1.2a-mprotect
directory..

Lack of double and triple fault

On the x86 architecture, it is possible for the processing of an exception to cause another
exception. An example is the case in which a division by zero occurs and the interrupt handler
for this exception has been swapped out to disk. In this case the processor generates a page
fault to indicate that the handler must be loaded. If, however, there is some bug in the
operating system that causes the page fault handler to also be unavailable, there is a serious
problem. It is not possible to execute the handler that was supposed to deal with the original
exception. If this issue is not addressed, an endless cycle of exceptions would be raised, each
of which cannot be handled. This would freeze the processor.

To solve this issue, the x86 architecture implements double and triple faults. The double
fault is an exception, handled just like the others, that indicates that an exception occurred
while handling an exception. This is a last opportunity for the operating system to deal with
the issue. If even this exception handler cannot be called, for example because the entire
interrupt table is unavailable, then the x86 CPU causes a triple fault. The triple fault causes
the computer to be reset.

QEMU 0.8.2 does not implement the x86 double and triple faults. As a consequence,
serious operating system errors cause QEMU to enter into an infinite loop of raising
exceptions. Although such errors are generally uncommon, it is quite possible that their real
origin is an emulation error or an incompatibility between the operating system and QEMU.
This is the case, for example, with Debian Lenny 5.0.1 Linux distribution which freezes
QEMU while booting. This does not only occur on the MINIX port of QEMU, but even if
unmodified QEMU 0.8.2 is run on Linux. Interrupts are handled using the setjmp/longjmp
combination, allowing generated code to return to QEMU whenever an interrupt occurs. In
this case, there is an endless loop in which an interrupt triggers a longjmp to return to the
main loop, which restores the same situation that caused the interrupt to be raised. One
difference between Linux and MINIX is that, on the former operating system, timer signals
continue to be delivered while on the latter they are not. This means that, while on Linux only
the virtual machine freezes and QEMU keeps accepting user input, on MINIX the QEMU
process freezes entirely.

Since this is an issue with QEMU in general rather than specific to the MINIX port, I have
not made much of an attempt to solve it; it is to be expected that this has already been done
in newer versions of QEMU. It does, however, make debugging harder as it is not clear at first
why the process freezes.

Logging system calls

One problem encountered when debugging QEMU was the fact that sometimes the delivery
of SIGALRM signals would stop. Because the setitimer function had been used with an interval
specified, signals should be delivered until explicitly stopped. To find out why the signal
delivery was stopped, I created code to intercept system calls. This code is found in ipchook.c,
included on the CD-ROM that comes with this thesis in the qemu\qemu-0.8.2-minix\minix
directory.

66

To be able to intercept system calls, I replaced the sendrec function. This function is used
by all system calls to pass the call number and parameters to the server process that handles
it. The start of the function is replaced by a jump instruction pointing to a hook function.
This way, each sendrec call is replaced by a call to the hook function. This function logs call
details, derived from the message passed to sendrec, to a file. The name of this file is specified
in the IPCHOOK_FILE environment variable or, if this variable is not specified, it is written to the
standard error output. The message is then passed on to the original sendrec function, a copy
of which has been preserved before patching it. This approach allows one to log system calls
without changing any operating system component. To use it, one only needs to include the
ipchook.c file in the project and call ipchook_init as soon as possible in the main function to
install the hook.

Using this approach, it turned out that library code using the alarm function caused
setitimer to be reset. These two functions are implemented in such a way that they share a
single timer. If alarm is used in a library function, the timer settings are restored later on by
calling alarm again. Since alarm cannot be used to restore the interval, only the one-shot
component is restored. Moreover, the restored value is only accurate up to the second because
the alarm function has a lower resolution than setitimer. This causes only a single more
SIGALRM signal to be delivered. The solution was to adapt the library functions to use the new
setitimer function rather than alarm, allowing the timer settings to be restored properly.

Making the core file more readable

QEMU is highly optimized for performance. For a large part, this is achieved by inlining
functions and using register global variables. Inlined functions are not compiled as separate
functions, but included at the code locations where they are called. This saves a function call
operation and allows for more aggressive optimization by the compiler. However, it also
greatly reduces the usefulness of stack traces and the readability of the assembly code. When
analysing core dumps, function calls are generally good reference points for finding the
correspondence between the C code and the disassembled code. If functions are inlined, this
correspondence is lost.

Register global variables allow often-used variables to be permanently stored in registers
rather than in memory. This can save many memory load and store operations if these
variables are used often. QEMU saves as many registers of the guest CPU in host registers as
possible, because these variables are often used. Although beneficial for performance, this
makes debugging harder. On the x86 architecture, the EBP register is used for global variables
while it would normally be used to store the location of the stack frame. Because of this, it is
harder to reconstruct a stack trace if register global variables are enabled. Moreover, functions
that do not know about the register global variables, such as library functions, store them on
the stack and use the registers for other purposes. This means that their values are hard to
find if the code using them was not running at the time the core dump was produced.

Because function inlining and register global variables make debugging harder, I disabled
these features while debugging QEMU. Although this should reduce performance, the
difference is not noticeable in normal use.

In addition to disabling optimization features, which is generally recommendable when
debugging, I also added code to store relevant information on the execution state in global
variables. By, for example, causing each code fragment used for code generation to store a

67

pointer to the original fragment, it is easily determined from the core file which instruction
may have caused the error resulting in the core dump.

Parallel testing

One approach to detect problems that is especially suitable for ports is parallel testing. By
testing the same program on the new platform and on one where it already works, one may be
able to find out at which moment differences start to occur. As a reference platform, I have
used Linux as this is the platform on which QEMU ran originally. This approach requires the
programs to be as similar as possible between the two platforms, which I have achieved by
causing most of the sections that are conditionally compiled only on MINIX to also compile
on Linux and disabling Linux-specific sections. After getting QEMU to compile this way and
enabling the deterministic mode, virtual machines running on MINIX and Linux should in
principle behave identically. By logging relevant events, such as interrupts, and comparing
the log files afterwards to find the first deviation between the two, one can find
approximately where the error occurs. This lead me to find that a division by zero error
occurred when Linux running on QEMU was starting Xorg, which happened when MINIX
was the host platform but not when Linux was the host platform.

Further attempts to find the source of the division by zero on the virtual machine revealed
that several other programs, including the GCC compiler, also exhibited the same problem.
Fortunately, the latter also printed the code location on which the exception had occurred.
Looking up the location in the GCC source code, this was revealed to be code which converts
floating point numbers. After a few more experiments, it turned out that I had implemented
a rounding function for floating point number incorrectly, causing the function in GCC to get
impossible results and eventually divide by zero. Re-implementing the function in QEMU
fixed the problem.

Profiling supported by GCC

The GCC compiler has features to make it possible to profile programs. If one enables this
option, two changes are made to the compiled code: each function calls the mcount function at
entry and a profiling timer is used. The mcount function counts how often each function is
called from each location, allowing a call graph to be constructed. When the profiling timer
causes a signal, the current code location is stored to find out how much of the time is spent
in each part of the program code. Combined, these approaches allow one to estimate how
much time each function uses when counting both the function itself and the functions it
calls, which makes it possible to find performance bottlenecks.

On MINIX, however, the mcount function is not implemented in the library and profiling
timers do not exist. As a result, profiling does not work out of the box. To be able to debug
severe performance issues that occurred when sound was enabled, I implemented GCC
profiling in MINIX. The main constraint was that the setitimer function I used only supports
a single timer, which is already used by QEMU. Rather than further change the operating
system to create another timer, which would be overly involved for this kind of problem, I
found another way to estimate time spent in each function.

Besides the profiling option, GCC also supports the -finstrument-functions switch that
causes the __cyg_profile_func_enter function to be called at the start of each function and

68

__cyg_profile_func_exit function just before returning. I implemented both functions in
such a way that they keep track of the amount of time spent in each function. Although this
causes more overhead than the default profiling option and provides data at the function
level rather than the line level, it does not require changing the operating system and proved
very useful for debugging the performance issue (which, as it turned out, was caused by
polling for sound playback completion occurring much too often).

Using MINIX' information server

Yet another useful source of debug information that is MINIX' information server. The
function keys can be used to ask this process to dump system information to the console. For
debugging QEMU, the shift-F2 combination which prints a list about the status with regard
to signal handling for each process turned out to be valuable.

The problem in this case was the fact that QEMU would hang while performing
benchmarks with Linux as a guest operating system. This happened consistently some 30-40
seconds after starting the benchmarks. This was quite surprising, as it happened during a
benchmark that would only check the time in a loop and would terminate after a specific
amount of time had passed. The information server revealed that, at the time QEMU stopped
doing useful work, the SIGALRM signal had been blocked. As a result, no timer interrupts were
sent to the guest, causing its time to stand still and the benchmark to continue forever.
Moreover, the user interface is also updated from the timer signal handler, creating the
appearance that the QEMU process was hanging.

Unfortunately, this problem proved to be hard to address. If debugging output was added
to QEMU, for example by writing to the standard output or files or by sending signals, QEMU
would not hang but rather terminate. Moreover the X server, the networking server and the
ethernet card driver all came down with it and no core dump was saved. This suggests that
there is a problem in MINIX, as it should not normally be possible for a process to bring all of
these processes down with it.

I have been able to perform tests to determine whether the SIGALRM signal handler returns
correctly and whether it restores the correct signal mask; since a signal is blocked while its
signal handler is running, these factors could explain that a signal becomes blocked. It turned
out, however, that the signal handler always returns and that the correct signal mask is stored
on the stack and passed to the sigreturn function. This is the case even at the end of the
signal handler, ruling out the possibility that an incorrect pointer operation somewhere
corrupts the signal mask.

As a workaround, I have added the following function when QEMU is compiled on MINIX:
void testsigmask(void)
{

static int reported;
sigset_t set, oset;

/* in MINIX, signals sometimes get blocked incorrectly; check
 * regularly to remedy this
 */
if (sigemptyset(&set) < 0 ||

sigaddset(&set, SIGALRM) < 0 ||
sigprocmask(SIG_UNBLOCK, &set, &oset) < 0)

{

69

perror("sigprocmask");
exit(-1);

}

/* warn about blocked signal (only first time) */
if (!reported && sigismember(&oset, SIGALRM))
{

fprintf(stderr, "warning: re-enabled SIGALRM\n");
fflush(stderr);
reported = 1;

}
}

This function unblocks the SIGALRM signal and warns the first time it has become blocked. It is
called regularly to ensure that the signal is unblocked in time. This fixes the problem, but
only for a short period of time. While a SIGALRM signal is delivered 60 times per second, it
becomes re-blocked approximately 10 to 15 times per second after the first occurrence.

As I was incapable of finding the source of this problem in the time available for this thesis,
this is something that will need to be looked into further. For now, the workaround appears
sufficient but the underlying problem is not fixed. It appears that the problem is to be found
in MINIX as providing output from a signal handler in a user process should not normally
affect other processes and drivers, but it is quite possible that it has to do with the setitimer
function that was added for this project.

3.7 - Testing QEMU
To determine whether QEMU actually works, I tested it with a number of guest images. The
following operating systems and bootable CD-ROMs that do not use an operating system
have been tested:

• GpartEd (partition editor live CD running Linux and X)

• Linux 2.6.18 installed on hard disk (Debian 4.0r3 Etch with Xfce and Firefox);

• Linux 2.6.20 installed on hard disk (small test image provided by on the QEMU
website);

• Linux 2.6.27 installed on hard disk (minimalist Slackware 12.2 with GCC);

• Linux 2.6.27 live CD (Damn Small Linux 4.4.10);

• Memtest (memory test utility which boots directly from CD);

• MINIX 3.1.2a;

• MINIX 3.1.4;

• Windows 95;

• Windows 98 SE.

I have eventually managed to make each of these images boot. Networking works on each of
the images except for Windows 95, for which I could not obtain an appropriate driver. It is
possible to use Internet Explorer on Windows 98 SE or Mozilla Firefox on Linux to graphically
browse the internet, something which at the time of writing is not yet possible on MINIX
directly. When using Internet Explorer on Windows 98 SE on the test system, speed is
acceptable for normal use, while Firefox on Linux is on the slow side but might be useful on

70

faster hardware. These tests were performed on a Pentium M 1.6 GHz laptop computer with
512 MB of memory, of which 128 MB was assigned to the virtual machine.

It should be noted that the clock frequency is an issue for Windows 98 SE. The
esdi_506.pdr driver that provides support for large disks hangs on a normal boot. Booting is
still possible in safe mode, in which the driver can be deleted from the %windir
%\system\iosubsys directory to allow normal booting. Using debug output from QEMU, I
noticed that Windows 98 SE generally uses a clock frequency of 200 Hz and occasionally
changes it to much higher values. This suggests that the fact that MINIX can deliver
interrupts at only 60 Hz may be a problem and leads to an alternative solution: the problem
can be resolved by setting the MINIX HZ constant to a higher value. Windows 98 works when
HZ is set to at least 150. I also tried 120 Hz, but this is insufficient. Compiling QEMU in
deterministic mode also solves the problem, as setitimer is no longer used in this case and
the MINIX clock frequency no longer influences QEMU. This is a clear indication that the
problem is caused by the unreliability of delivery of clock events on MINIX due to its low
default clock frequency.

Besides the images listed before, I have also tried a more recent version of the Debian
distribution, Lenny, which comes with a Linux 2.6.26 kernel. This version does not work. It
causes an invalid memory access while booting and hangs because the resulting interrupt
cannot be handled yet at that time. It should be noted, however, that the same behaviour is
found when running it on QEMU 0.8.2 on Linux, even when using the binary version from
the Debian package management system. I have concluded that the problem is an
incompatibility between QEMU 0.8.2 and this specific version of Linux, in particular since
the newer kernel that comes with Slackware does work. Hence the problem is not caused by
the QEMU port and I have not looked into it any deeper.

3.8 - Discussion
All in all, I found that QEMU can be ported to MINIX, but this does require making some
changes to the operating system. Moreover, due to missing features and bugs in MINIX as
well as some flaws in QEMU, porting is harder than it needs to be. These flaws include in
particular non-standards compliant and compiler-dependent code and in some cases lack of
error checking. Programs which have already been ported to more platforms, such as the SDL
library, avoid such mistakes and pose much less of a problem. Being aware of possible issues
in advance might save considerable effort when porting software to MINIX. Those who
consider undertaking such a project would do well to check other people's experiences in
advance. This chapter has in part been aimed at providing people with such information.

There are some ways in which changes to MINIX could contribute to easier porting. In
particular, virtual memory could prevent problems due to lack of memory. Once virtual
memory is implemented, it could also provide an implementation of mprotect and protect the
NULL pointer in order to make debugging easier. For QEMU, the lack of the setitimer function
has been a major issue. As this is a standardized function, it is to be expected that its
inclusion in MINIX would also aid other porting projects. A full implementation could also
provide a profiling timer, which would also make debugging easier. A variable clock
frequency, for example by scheduling clock ticks based on need rather than with fixed periods
(a tickless kernel), could further increase the resolution and hence the usefulness of this
function.

71

Making the MINIX libraries more complete would further aid porting. Important functions
I found to be missing are the floating point rounding functions, realpath, 64-bit support for
the printf family and the send and recv socket functions. Some of these functions have been
implemented to be able to port QEMU and could be adapted for inclusion in the MINIX
libraries. Another major improvement to the sockets library would be to treat the loopback
address (127.0.0.1) as a separate networking device rather than a special case. This would make
porting easier, make the X server easier to use without a network and could make the system
safer if this feature is properly used by local servers.

Finally, porting the GNU Debugger (GDB) would also make porting easier. It is a debugging
tool that those porting software to MINIX are likely to already be familiar with and it provides
many advanced debugging features. Moreover, unlike the MINIX Debugger (MDB), it would
be capable of reading the symbol tables in the binary format produced by GCC. This makes
analysing core dumps considerably easier, especially for those with poor assembly skills.

72

4 - How to use QEMU on MINIX

4.1 - Installing QEMU on MINIX

What has to be done

Unfortunately, compiling and installing QEMU on MINIX is not as simple as just
downloading and unpacking a package. To be able to compile QEMU, a number of packages it
depends on must be installed first. This includes a number of packages that can be installed
with the packman utility as well as the newly ported libSDL package. To be able to install
QEMU on current MINIX versions one has to patch and recompile MINIX, as the current
release version of MINIX (version 3.1.2a) lacks some POSIX features needed by QEMU and
has a bug that strongly affects it.

To allow for easy installation, I created a shell script that performs all actions needed to
install required packages, patch MINIX and compile and install libSDL and QEMU.
Additionally, this script is capable of creating and installing binary packages for libSDL and
QEMU for use with packman. This will be particularly useful once the MINIX patches have
been incorporated into the next release version of MINIX, removing the need to patch
MINIX. The install script is found in the /qemu/install directory on the CD-ROM included
with this thesis. More information on the contents of this CD-ROM can be found in
Appendix A.

I will first discuss what has to be done to install QEMU using the installation script. Next, I
provide instructions to install QEMU manually. This may be needed for safe installation on
modified MINIX systems and it provides more insight in the inner workings of the
installation script.

Installing using the installation script

The simplest way to patch MINIX and install the binary distribution of QEMU is to run the
install script without any parameters. As the script involves a MINIX patch, I strongly
recommend that the script be run only on unmodified MINIX 3.1.2a. Please back up any
valuable data before running it. I do not take responsibility for any damage the script may
cause, use it at your own risk. One can download and execute the install script in the
following way:

urlget http://www.few.vu.nl/~vdkouwe/qemu/downloads/qemu-0.8.2-install.sh.bz2 \
 | bunzip2 > qemu-0.8.2-install.sh
sh qemu-0.8.2-install.sh

After confirming that the user wants MINIX to be patched and recompiled, the install script
performs all actions needed to install QEMU. It also creates a file in the current working
directory named qemu-0.8.2-install.log. This file contains an overview of everything that
was done and the results. It can be used to debug in case something went wrong or simply to
find out what changes were made by the script.

To control which actions are performed, a number of arguments can be specified. Each
argument specifies a specific action to be included and may imply other actions which are

73

needed for the specified action to be executed successfully. As such, the way the install script
is invoked is similar to the way makefiles work. The following actions can be specified:

clean Uninstalls QEMU and libSDL and deletes all source and temporary files;

packages Installs packages required to compile QEMU and libSDL;

patchmnx Patches MINIX to include the changes required for QEMU;

buildmnx Compiles and installs MINIX;

buildsdl Downloads source code for libSDL, compiles it and installs it;

installsdl Downloads libSDL binary package and installs it;

makepacksdl Creates a binary package for libSDL from downloaded source code;

build Downloads source code for QEMU, compiles it and installs it;

install Downloads QEMU binary package and installs it;

makepack Creates a binary package for QEMU from downloaded source code.

The following example downloads and patches a fresh copy of the QEMU source code,
compiles it and installs it from source:

sh qemu-0.8.2-install.sh clean build
The actions are executed in the sequence in which they were listed. If nothing is specified, the
default is to assume that only install was specified. The buildsdl, makepacksdl, build and
makepack commands cause source files to be downloaded. Source code for QEMU is stored in
/usr/src/qemu-0.8.2 and source code for libSDL in /usr/src/SDL-1.2.13. The files in these
directories are always overwritten, so the install script causes the distributed versions to be
installed. One can use the build.minix scripts provided with these programs to compile these
programs after making modifications.

The script needs to download a number of files, and it is therefore easiest to use on a
MINIX machine with a working Internet connection. If there is no way in which MINIX can
connect to the Internet, one may instead download the files elsewhere and copy them into
the /usr/tmp/packages. The list of files to download is found below:

● Always required

○ http://www.few.vu.nl/~dcvmoole/minix/packages/patch-2.5.4.tar.bz2

○ http://www.few.vu.nl/~vdkouwe/qemu/downloads/minix-3.1.2-qemu.patch.bz2

○ http://www.minix3.org/packages/gcc-3.4.3.tar.bz2

● Required when installing QEMU binaries (install specified, build and makepack
missing)

○ http://www.few.vu.nl/~vdkouwe/qemu/downloads/qemu-0.8.2.tar.bz2

● Required when installing libSDL binaries (installsdl, build or makepack specified,
buildsdl and makepacksdl missing)

○ http://www.few.vu.nl/~vdkouwe/qemu/downloads/SDL-1.2.13.tar.bz2

● Required when compiling QEMU from source (build or makepack specified)

○ http://www.few.vu.nl/~vdkouwe/qemu/downloads/qemu-0.8.2.tar.gz

74

http://www.few.vu.nl/~dcvmoole/minix/packages/patch-2.5.4.tar.bz2
http://www.few.vu.nl/~vdkouwe/qemu/downloads/qemu-0.8.2.tar.gz
http://www.few.vu.nl/~vdkouwe/qemu/downloads/SDL-1.2.13.tar.bz2
http://www.few.vu.nl/~vdkouwe/qemu/downloads/qemu-0.8.2.tar.bz2
http://www.minix3.org/packages/gcc-3.4.3.tar.bz2
http://www.few.vu.nl/~vdkouwe/qemu/downloads/minix-3.1.2-qemu.patch.bz2

○ http://www.few.vu.nl/~vdkouwe/qemu/downloads/qemu-0.8.2-minix.patch.bz2

○ http://www.minix3.org/packages/grep-2.5.1a.tar.bz2

○ http://www.minix3.org/packages/gzip-1.2.4.tar.bz2

○ http://www.minix3.org/packages/ncurses-5.5.tar.bz2

○ http://www.minix3.org/packages/pdksh-5.2.14.tar.bz2

○ http://www.minix3.org/packages/X11R6.8.2.tar.bz2

● Required when compiling libSDL from source (buildsdl or makepacksdl specified)

○ http://www.few.vu.nl/~vdkouwe/qemu/downloads/SDL-1.2.13-minix.patch.bz2

○ http://www.libsdl.org/release/SDL-1.2.13.tar.gz

The packages that are downloaded from http://www.few.vu.nl/~vdkouwe/qemu/downloads/
can also be copied from the /downloads directory of the CD-ROM that comes with this thesis,
while packman can be used to install some of the other packages from the MINIX CD-ROM.
Please note that the former CD-ROM uses ISO format and therefore cannot be mounted in
MINIX, but its files can be read using the isoread tool.

Installing manually

Prerequisites

The install script installs a number of packages to be able to compile MINIX and libSDL. This
section about manual installation assumes that the MINIX system fulfils all prerequisites in
advance. To be able to compile and run QEMU, one will need to have:

● Unmodified MINIX 3.1.2a. When running a different or modified version, merging in
the operating system patches may have to be done manually. MINIX is available from
http://www.minix3.org/download/.

● A functional Internet connection on the MINIX machine to download the source code
and patches. If this is not possible, some alternative approach to transfer the files will
be needed.

● The gcc-3.4.3 package, needed to compile QEMU, is available through the packman
command.

● The grep-2.5.1a package, needed by the libSDL configure script, is available through
the packman command.

● The gzip-1.2.4 package, needed to extract source code, is available through the
packman command.

● The ncurses-5.5 package, needed to for curses support, is available through the
packman command.

● The pdksh-5.2.14 package, needed to run the QEMU configure script, is available
through the packman command.

● The X11R6.8.2 package, needed to compile SDL, is available through the packman
command.

75

http://www.minix3.org/download/
http://www.few.vu.nl/~vdkouwe/qemu/downloads/
http://www.libsdl.org/release/SDL-1.2.13.tar.gz
http://www.few.vu.nl/~vdkouwe/qemu/downloads/SDL-1.2.13-minix.patch.bz2
http://www.minix3.org/packages/X11R6.8.2.tar.bz2
http://www.minix3.org/packages/pdksh-5.2.14.tar.bz2
http://www.minix3.org/packages/ncurses-5.5.tar.bz2
http://www.minix3.org/packages/gzip-1.2.4.tar.bz2
http://www.minix3.org/packages/grep-2.5.1a.tar.bz2
http://www.few.vu.nl/~vdkouwe/qemu/downloads/qemu-0.8.2-minix.patch.bz2

Installing GNU Patch

Besides these default packages, a program to apply source code patches is needed.
Unfortunately, the diff and patch programs included with MINIX cannot create and apply
reliable multi-directory patches. For this reason I used GNU Diff to create all patches
available here. GNU Patch is needed to apply them. GNU patch 2.5.4 has been ported by
David van Moolenbroek and is available from http://www.few.vu.nl/~dcvmoole/minix/. It can
be installed using the following commands on the console:

urlget http://www.few.vu.nl/~dcvmoole/minix/packages/patch-2.5.4.tar.bz2 | \
 bunzip2 | \
 tar xf - (ignore "File exists" errors)
chmem =1048576 /usr/gnu/bin/patch

GNU Patch uses /tmp for temporary storage. Since this directory is on the root partition,
which is only 16MB, it will run out of disk space when performing patches. To fix this, one can
run the following commands:

rm -r /tmp
ln -s /usr/tmp /tmp

This links /tmp with the temporary folder on the /usr partition, which tends to be much larger
than the root partition. This solves the problem, but it should be noted that this merges the
two folders for temporary files. If this is undesirable, the old situation can be restored
afterwards by deleting and re-creating /tmp. Another possibility is to create a new folder on
the /usr sub-partition and permanently link /tmp to that folder.

Patching MINIX

As has been explained, QEMU cannot run on bare MINIX 3.1.2a, which lacks features that
QEMU requires and contains a bug that strongly affects it. The following issues are addressed
by the MINIX patches included with the ported QEMU:

● A bug causes the CPU flags register to not be restored after a signal handler executed,
resulting in unpredictable crashes. These crashes are uncommon in most programs,
but common in QEMU since it processes SIGALRM signals at a high rate. This patch is
taken from the Subversion repository. I would like to thank Jens de Smit for pointing
this out in a post to comp.os.minix.

● Differences between the ACK and GNU definitions in the include files. This causes
GNU library compilation to fail. I copied definitions from the ACK headers to the GCC
ones, removing const from the putenv declaration in stdlib.h and adding definitions
for _SC_PAGE_SIZE and _SC_PAGESIZE to unistd.h.

● QEMU requires the setitimer function, which is not available in MINIX. This function
is added by the patch. It was implemented by David van Moolenbroek and I made
some fixes to avoid the MINIX libraries from resetting it.

● MINIX 3.1.2a does not allow the select function to be used on an ethernet device
(/dev/eth). This is needed to wait for incoming packets in TUN networking and in the
qemu-vswitch program. I added this functionality, and it has since been added to the
Subversion repository.

● MINIX does not implement the pread64 and pwrite64 functions which allow reading
from and writing to files beyond the 232 byte boundary. This is never needed for regular

76

http://www.cs.vu.nl/~dcvmoole/minix/

files, which cannot be that large on MINIX, but is required to be able to access large
disk partitions in a safe way.

The modified code can be found in the /minix directory of the CD-ROM that comes with this
thesis. More information on the contents of the CD-ROM can be found in Appendix A.
Instructions are provided below to apply the patches to MINIX. The patch file should work
without errors on unmodified MINIX 3.1.2a, but the patch program is likely to need manual
assistance if a different or modified version of MINIX is used.

First, one needs to download the patch and apply it using GNU Patch. This is done using
the commands listed below:

urlget http://www.few.vu.nl/~vdkouwe/qemu/downloads/minix-3.1.2-qemu.patch.bz2 | \
 bunzip2 | \
 /usr/gnu/bin/patch -p0

After applying the patch, MINIX needs to be rebuilt. The modifications are only effective after
a reboot. Unfortunately, the reboot program will cease to work after recompilation, as its
libraries have changed but the MINIX kernel and servers running are still the same. For this
reason, one needs to make a temporary copy of /usr/bin/reboot to be able to reboot without
errors.

cd /usr/src/tools
make install
cd /usr/src/lib
make install-ack
PATH=$PATH:/usr/gnu/bin make install-gnu
cd /usr/src/commands
cp /usr/bin/reboot /tmp
make clean install
/tmp/reboot

Installing libSDL

QEMU uses libSDL as a portable way to output graphics. To be able to get graphics output
from QEMU, I ported it to MINIX as well. This library is not strictly necessary as I included
support for text output using the Curses library, but the ability to output graphics makes
QEMU much more useful. One can choose between both output methods using command
line switches, so there should be no need to disable graphics output at compile time.

To be able to compile and install libSDL, one first needs to download the source code. The
source code for the MINIX port is provided as a patch to the original SDL code. The patched
code is obtained using the following commands:

urlget http://www.libsdl.org/release/SDL-1.2.13.tar.gz | \
 gunzip | \
 tar xf -
urlget http://www.few.vu.nl/~vdkouwe/qemu/downloads/SDL-1.2.13-
minix.patch.bz2 | \
 bunzip2 | \
 /usr/gnu/bin/patch -p0

The next step is to build and install libSDL. To run its configure script, the shell needs to have
sufficient memory available. As MINIX does not implement virtual memory, this memory
needs to be assigned in advance using the chmem command. It should be noted that the chmem
commands below should only be run if a higher value was not assigned previously; if one
reduces the amount of memory allocated, applications that require the higher value may fail

77

afterwards. An easy way to check the amount of memory is running chmem +0 <filename>,
replacing <filename> with the name of the file to be checked. The commands I use to compile
libSDL are as follows:

chmem =1048576 /bin/sh
chmem =2097152 /usr/local/bin/ksh
cd SDL-1.2.13
sh build.minix

Installing QEMU itself

Now that all prerequisites have been installed and the operating system has been patched,
QEMU can be compiled and installed. The first step is download and patch it, just like the
way this was done for libSDL:

urlget http://www.few.vu.nl/~vdkouwe/qemu/downloads/qemu-0.8.2.tar.gz | \
 gunzip | \
 tar xf -
urlget http://www.few.vu.nl/~vdkouwe/qemu/downloads/qemu-0.8.2-
minix.patch.bz2 | \
 bunzip2 | \
 /usr/gnu/bin/patch -p0

Finally, the patched QEMU can be built and installed using the build.minix shell script.
Concerning the use of chmem the same remarks apply as in the previous sub-section.

chmem =33554432 /usr/gnu/bin/gld
cd qemu-0.8.2
sh build.minix

If all of this succeeded, QEMU has been installed and can be run. Before continuing, one may
want to restore the /tmp directory to its original state:

rm /tmp
mkdir /tmp
chmod 777 /tmp

4.2 - Running QEMU on MINIX

Running the pre-made disk images

For the reader to be able to test QEMU for him- or herself, this section describes how to run
QEMU on the MINIX operating system. There is little difference between the way this is done
on MINIX and Linux, so one who is already familiar with QEMU may want to skip this
section. Most differences relate to networking, but the default user mode networking does
not differ between MINIX and other host operating systems. The considerations to be made
when setting up the network have been discussed previously (in section 3.4) and are therefore
not repeated here.

The QEMU website provides a small and simple Linux image to allow one to test QEMU. It
contains the Linux 2.6.20 kernel and a number of utilities to test it. This disk image can be
run as follows:

urlget http://www.qemu.org/linux-0.2.img.bz2 | bunzip2 > linux-0.2.img
qemu -hda linux-0.2.img

Only the location of the disk image is specified, so QEMU uses the default for all other
settings. Other disk images, such as the ones on the CD-ROM, can be specified in the same

78

way. This requires that X is available and that QEMU has been assigned sufficient memory to
accommodate a 128 MB buffer of guest machine memory. This may be a problem when using
a machine with little RAM because MINIX 3.1.2 does not implement virtual memory.

To run QEMU without X, add -curses to the command line. This causes the Curses library
rather than X to be used to display text output from the virtual machine. To avoid an “Error
opening terminal” error message, be sure to install the library first. This can be done by
selecting the ncurses-5.5 package in packman. An alternative is to run X on another machine
and specify where it is running using the DISPLAY environment variable. The line below, for
example, causes QEMU to use the X server which is running on the computer with IP address
192.168.0.10 at X port 0:

DISPLAY=192.168.0.10:0 qemu -hda linux-0.2.img
QEMU displays a message “Could not initialize SDL – exiting” if the DISPLAY setting is missing
or incorrect. It should be noted that, while this approach if effective in saving memory, it
seriously hampers performance, especially if a slow or high-latency network is used.

In some cases, depending on the video hardware used, it may be possible to substantially
reduce the memory used by X simply by changing its chmem value. Its default value is 512 MB
and such a high value should not be needed on most hardware. If QEMU does not start due
to lack of memory, try changing the chmem value for /usr/X11R6/bin/X until a low value which
still allows X to start is found.

To reduce the amount of memory needed by QEMU itself, use the -m switch to specify how
much RAM is provided to the guest machine in MB. If, for example, one specifies -m 64 then
the guest machine gets to use only 64 MB of memory and QEMU's memory footprint can be
reduced. The chmem command should then be used to avoid the memory from being allocated
to QEMU. The default set by the compile script is slightly over 144 MB, which is appropriate
only if the guest machine has 128 MB. If 64 MB is assigned to the guest instead, then I would
recommend using the line below to reduce QEMU's memory footprint to 80 MB.

chmem =83886080 /usr/local/bin/qemu
If the chmem value is too large, memory is wasted and QEMU may not start due to a lack of free
memory. If it is too small, QEMU exits with an error message and provides a recommendation
for the amount of memory to be assigned to QEMU. When in doubt, assign a small value to
trigger this error message and obtain an estimation. The estimate is computed based on the
total RAM, video and BIOS memory available to the virtual machine plus 8 MB for other
buffers allocated by QEMU as well as its stack. In my experience this has always been
sufficient, although it is hard to estimate the exact amount of memory used. There may be
configurations in which it is not enough and a higher value should be chosen.

Setting up a new virtual machine

Setting up a new virtual machine is not really different between MINIX and Linux; a short
introduction is provided in this section for those unfamiliar with QEMU or with MINIX disk
naming. With QEMU, all configuration is done on the command line when starting a virtual
machine, so setting up the virtual machine involves only preparing the disk image. This
means first creating the file in which it is stored and then installing an operating system on it.

To create a disk image, one uses the qemu-img tool which comes with QEMU. The size of a
virtual disk is fixed after it has been created, so this needs to be decided on in advance. One

79

also needs to choose a format to store the disk image in, as QEMU provides several
possibilities. These formats differ in the features offered and several formats are mainly
offered for compatibility with other tools. The simplest type is “image,” which means that the
specified file literally stores the contents of the disk. This type takes up all space available to
the virtual machine from the moment it is created, while other formats generally only store
disk blocks that have been written to. This means the file storing the disk image is much
smaller initially, but grows as the guest operating system uses it. The native QEMU formats
doing this are called COW (copy-on-write) and QCOW (quick copy-on-write). The former
type is not supported on MINIX. It is implemented by mapping the image file to memory,
which is not possible in MINIX. This means that, unless compatibility with some other
program is desired, QCOW is the most suitable format. Hence, the following command
would be a typical way to create a 2 GB disk image named my-disk-image.qcow on MINIX:

qemu-img create -f qcow my-disk-image.qcow 2G
COW format files created on other operating systems can be converted to QCOW using qemu-
img to allow them to be used on MINIX. This has to be done on an operating system on which
they are supported, which excludes MINIX and Windows. The COW format file my-disk-
image.cow can be converted to QCOW using this command:

qemu-img convert -f cow -O qcow my-disk-image.cow my-disk-image.qcow
Like on other Unix-like operating systems, it is possible to references disks and disk partitions
as files and this way they too can be used as image files and can be made available directly to
virtual machines. This is particularly important when installing operating systems, as these
are often provided on CD-ROM. Moreover, using a physical partition allows one to share it
with other operating systems on the host machine and to bypass the 4 GB limit of MINIX
partitions. Unfortunately, MINIX does not support DVDs so those cannot be used in QEMU.

Disks are identified in MINIX as /dev/cndm, where n indicates the number of the disk
controller (either 0 or 1) and m the position of the disk on that controller. My experience is
that, in a system with a single disk and a single CD-ROM drive, /dev/c0d0 generally refers to
the disk and /dev/c0d2 refers to the CD-ROM drive. To boot from the CD-ROM to allow the
operating system on it to be installed, one would then use the following command line:

qemu -hda my-disk-image.qcow -cdrom /dev/c0d2 -boot d

80

5 - Performance measurements

5.1 - Methodology

Measuring QEMU performance

To be able to determine how well QEMU performs on MINIX and why, I created a benchmark
program which conducts a variety of tests. Each of these tests considers a different aspect of
performance. The advantage of this approach is that it allows me to determine where in
MINIX the bottlenecks are, so that suggestions can be made to improve the situation. It is
most convenient to perform the timing measurements at the guest machine, as this is also
where the benchmark code is run. When performing many measurements with several guest
images as well as multiple configurations for QEMU, however, it is more suitable to store the
results on the host as measurements from the virtual machines have to be combined. This
means that there must be some way for the host to tell the guest to start benchmarking and
some way for the guest to be able to send back the results. Moreover, it is convenient if
changes to the benchmark program need not be applied to each guest image separately to
keep the system flexible.

To measure at the guest and store results at the host in a flexible way, I have created three
separate programs and a shell script which together perform the benchmarking. These
programs have been included in the /utils/benchdriver and /utils/benchmark directories on
the CD-ROM. The situation is shown in Figure 13. The benchdriver program coordinates the
various tests. For each configuration and each guest image, it compiles QEMU and extracts
the guest image. It then launches QEMU. The guest images have been set up in such a way
that another program, benchdriverserver, is run at boot time. This is the only program that
has to be inside the guest disk images. It has been kept as simple as possible so that the need
for changes is unlikely. Although it would have been possible to use the Telnet daemon
instead and this program is available by default for both Linux and MINIX, these operating
systems have different implementations. This would add an unnecessary element of
difference between them; overhead in the Telnet server might affect benchmark results.

While QEMU is booting the guest image, benchdriver regularly attempts to connect to
benchdriverserver, which acts as a TCP server. Connecting in the other direction (from guest
to host) would not require this kind of polling behaviour, but would require that the address
of the host is known when the guest image is made. As this depends on the computer the
benchmark is run on as well as on QEMU's networking settings, this is inconvenient.

Once benchdriver on the host has connected to benchdriverserver, it sends the
benchdriver.sh shell script over the TCP connection. The guest runs this shell script. It
downloads the source code of the benchmark program using FTP, compiles it and finally runs
it. Using the script rather than performing these operations directly in benchdriverserver
allows for much flexibility. Even though MINIX uses the ACK compiler by default, I have
decided to compile the benchmark program using the GCC 4 compiler on both MINIX and
Linux. Previous attempts where ACK was used showed that MINIX was put at a serious
disadvantage, since GCC performs more extensive optimizations that had considerable
impact on several of the benchmarks.

81

Because the platforms tested have slightly different versions of GCC 4, I have also used the
objdump utility to get the assembly code for the benchmark program and compared them
between the different versions. I have considered in particular the innermost loops of the
various benchmarks, which determine nearly all of the runtime. I have found only a few
important differences. The most important difference is that the Linux version of GCC
reduces memory access by loading a memory location in a register, manipulating it there and
only writes back the result to memory when all operations have been performed. This
provides a substantial performance benefit for some benchmarks. To avoid this optimization,
I marked variables with the volatile keyword, forcing the compiler to generate the
appropriate loads and stores on every access. Another difference was in the flow_conditional
benchmark, where a special instruction sequence is used to avoid conditional jumps. I have
made this optimization impossible by changing the action taken if the condition tested for is
true; the function originally incremented a global variable and now adds a larger number.

When the benchmark program itself is run, it performs various tests which are listed in Table
5. Multiple tests are performed to find out which aspects of the emulation are particularly
slow. Most benchmarks focus on a specific aspect of the CPU, the operating system or some
hardware device. The exceptions to this are calibrate_busy, calibrate_idle and
blended_compileminix. The former two run for a fixed amount of time and are therefore not

82

Figure 13: Interaction between processes involved in measuring performance.

benchdriver benchdriver
serverQEMU benchmarkbenchdriver.sh

Compiles,
extracts image

and runs runs at OS boot

connects over TCP and sends
benchdriver.sh

runs

downloads,
compiles and

runs

requests host time/histogram data using CPUID

returns host time/histogram data in registers

sends results over stdout

sends results over TCP

terminates

truly benchmarks. Instead, they are used to determine whether time is most appropriately
measured in CPU cycles or in milliseconds and provide a conversion factor between the two.
Why this is needed is described in more detail in the next paragraph. The
blended_compileminix benchmark compiles MINIX and serves to give an overall overview of
performance on a real-life task.

To obtain an accurate measurement it is desirable that the benchmarks take a sufficient
amount of time; this causes overhead events, such as clock ticks, to be averaged out over the
time period. I have attempted to choose loop bounds in such a way that, whenever possible,
benchmarks should take at least 100 milliseconds on the fastest configuration and at most 15
seconds on the slowest one. The host time is measured before and after each test. The host
time rather than the guest time is used because it reflect real time more accurately, especially
in deterministic mode. I added operations to the CPUID instruction to allow the guest machine
to request the host time, as was described in more detail in section 3.4. The host time is
measured in both milliseconds (using the gettimeofday function) and CPU cycles (using the
RDTSC instruction). The latter allows for measuring at a much higher resolution than the
former, reducing measurement error, but does not always reflect real time. In particular, the
calibrate_busy and calibrate_idle benchmarks show that, when Linux is the host operating
system, the clock frequency is strongly reduced when the CPU is idle. This is most likely done
to save energy. This means that, when Linux is used as the host operating system, CPU cycles
are not a reliable way to measure the time taken by tests that include idle time. The results
show that these tests are calibrate_idle, io_network_latency, io_network_throughput and
blended_compileminix. For this reason, I measure both and use the milliseconds only in those
cases where CPU cycles are not reliable. The calibrate_busy benchmark keeps the CPU busy

83

Table 5: Benchmarks performed by the Benchmark program

Benchmark Description
calibrate_busy Busy wait for a fixed time, determines processor frequency
calibrate_idle Idle wait for a fixed time, determines whether processor frequency is fixed
arithmetic_int Integer arithmetic
arithmetic_float Floating point arithmetic
flow_call Recursive calls
flow_conditional Conditional jumps
flow_exception Handle signals caused by division by zero
flow_jumptable Computed jumps
flow_syscall System calls
flow_taskswitch Waiting for child process
io_disk_read_random Read from disk, scattered small blocks
io_disk_read_sequential Read from disk, sequential large block
io_disk_write_random Write to disk, scattered small blocks
io_disk_write_sequential Write to disk, sequential large block
io_display Display text on the primary console
io_network_latency Connect to an external computer over TCP
io_network_throughput Send data to and receive data from an external computer over TCP
memory_load_random Read from memory, scattered small blocks
memory_load_sequential Read from memory, sequential large block
memory_store_random Write to memory, scattered small blocks
memory_store_sequential Write to memory, sequential large block
blended_compileminix Recompile MINIX

for a fixed time, which allows the clock frequency to be computed and used as a conversion
factor.

When benchmarking has been completed, the results are sent back to benchdriverserver
using the standard output, which in turn forwards them to benchdriver over the TCP
connection that was established in the beginning. Any text written to the error output is also
sent over this connection to make it easier to diagnose problems. These two output streams
are multiplexed over the same connection by prefixing each chunk with a channel number.
benchdriver stores channel 1, the standard output of Benchmark, in a text file and sends
incoming text on channel 2, the error output, to its own error output. After benchmark has
terminated, benchdriverserver notifies benchdriver. benchdriver then terminates QEMU,
cleans up the guest image and continues with the next configuration.

To obtain reliable measurements, it is desirable to perform multiple measurements and
compute the average. This evens out disturbances caused by variation in such factors as
response time in hardware and the network, the number of timer interrupts occurring during
the benchmark (on both the host and the guest), differences in the way the benchmark
process is scheduled on the guest and the way QEMU is scheduled on the host. An additional
advantage is that, with multiple separate measurements, it is possible to estimate the
variation in benchmark results. Using this information it is possible to distinguish between
meaningful differences and differences potentially caused by measurement errors.

To obtain multiple measurements, the entire benchmark suite is run five times on each
platform. The benchmark suite may run individual benchmarks multiple times if they are
expected to be inaccurate due to a short runtime. Each benchmark is repeated until at least
one minute has been spent on it. Hence, each benchmark is run at least five times but may be
run more often for those configurations on which it is fast.

Benchmarks are run several times in succession, which may have a impact on performance
due to caching. I found this effect in particular with the disk benchmarks when running on
Linux, since Linux uses a large part of free memory for disk caching. As cached blocks are
retrieved in a small fraction of the time needed for uncached blocks, performance was
substantially higher in the later runs. I addressed this by clearing the disk cache before
running these benchmarks and by comparing only measurements from the same run. For
example, MINIX can be compiled multiple times within a minute when running natively but
this generally takes more than a minute when running on QEMU. If the later runs are faster
then it would be unfair to compare the multiple native runs with a single emulated run.
Hence, only the first run would be compared in this case.

Measuring impact of the HZ constant

On Linux, QEMU sets the operating system clock frequency to 1024 Hz if possible. This
allows for more accurate emulation, as guest machine timer interrupts can be delivered at
most at the host timer frequency. MINIX uses a clock frequency of 60 Hz by default. This
frequency can be changed only by modifying the HZ constant defined in
/usr/include/minix/const.h and then recompiling and rebooting. As the default clock
frequency for Linux is 250 Hz, guest interrupts are delivered irregularly; four or five interrupts
are delivered in direct succession, followed by a interrupt-less pause that lasts much longer
than Linux expects. Hence it would be desirable for QEMU if the MINIX clock frequency were
to be higher than it currently is or, even better, if it would be flexible. As I have argued before,

84

it is not desirable to do this as a part of the installation of QEMU, as the current MINIX has
the limitation that it crashes after 231 clock ticks. Moreover, the value of the HZ constant has
performance implications. Interrupt handling by itself is relatively slow and each clock tick
requires some time to be processed by the kernel. The more clock ticks there are per second,
the less time remains for user processes. As an aid for making decisions on the clock
frequency, I have performed tests to measure its performance impact. How these tests were
performed is described in this section.

To measure the impact of the HZ constant, one can run a simple benchmark that determines
how much of the time is available for user processes. This is done by running a small loop, the
duration of which in CPU cycles is known, and counting how many iterations of the loop are
possible within a fixed number of CPU cycles. The maximum number of iterations possible if
the operating system does not interfere can then be computed exactly, which allows one to
determine how much performance is lost due to clock interrupts being processed.

The source code for this benchmark is found on the CD-ROM in the /utils/bench-hzctl
directory. The main loop is found in the bench-hzctl-asm-ack.s and bench-hzctl-asm-gcc.s
files. Different files are used for ACK and GCC because they use different assembly syntaxes;
other than the difference in syntax, the contents are the same. The makefile selects the
correct version. The inner loop is written in assembly to ensure that it is as small as possible,
yielding maximum accuracy. It can be summarized in C as follows:

u32_t perform_test_asm(u64_t cycles)
{

u32_t count = 0;
u64_t cycles_end;

cycles_end = rdtsc() + cycles;
while (rdtsc() < cycles_end)

count++;

return count;
}

Here rdtsc is a function that reads the number of CPU cycles since system boot as a 64-bit
unsigned integer. This functionality is available as a CPU instruction on the x86 architecture.
Each loop iteration takes a fixed number of CPU cycles, depending only by the CPU model
used. As the benchmark runs for 232 cycles, the expected number of iterations without
operating system interference can be computed. This allows one to determine the percentage
of time lost to operating system overhead from the actual count that is measured.

The benchmark is run in several configurations. As reference points, it is run on an
unmodified version of MINIX with HZ set to 60 and a version with HZ set to 250. To be able to
measure the impact of the clock frequency, a modified version of MINIX is used in which the
clock frequency can be set dynamically. To this end I have implemented a device named
/dev/clock and implemented ioctl operations CLIOCGETHZ and CLIOCSETHZ for it, respectively
reading and changing the clock frequency. This allows many different speeds to be measured
without the need for recompiling and rebooting MINIX in between. The modified MINIX has
HZ set to a high number, but requests clock interrupts at a lower frequency depending on the
value set using CLIOCSETHZ. The clock interrupt handler does not increment the current time
by one, as is normally the case, but rather by the ratio between HZ and the actual clock
frequency. In this way, HZ is still the unit used for timekeeping but fewer clock interrupts are
used. This approach is not suitable for inclusion in MINIX because it requires a high value for

85

HZ, which causes MINIX to crash sooner due to overflow of the realtime variable, and it only
allows frequencies that evenly divide the HZ constant. For this test I set HZ to 2400, which has
many divisors.

5.2 - Results
Based on the measurements I performed as described earlier, I compare the performance of
MINIX with that of Linux. I have chosen to use Linux as a reference operating system because
it is the original platform for which QEMU was written. Moreover, it is mature, widely used,
well known and open source, which makes it a suitable reference operating system and makes
it easier for any differences to be explained. The MINIX version is 3.1.2a for both the host and
the guest, as this was the most recent stable version when I created the test images. As a host
Linux operating system, the Debian distribution of the 2.6.18 kernel is used. Since this
distribution was found to be too large to create a suitable image that could fit comfortably on
a MINIX partition, I used Slackware based on the 2.6.27 Linux kernel for the guest image.
This distribution is known for it flexibility and easily allows one to create a reasonably small
image that includes all the essentials; in particular the GCC compiler and the tools and
libraries that it needs are very large and leave little room for other luxuries. In total, the
MINIX image takes up 219 MB and Slackware Linux uses 377 MB, while some other Linux
installations I tried exceeded 2 GB. All tests have been conducted on a laptop with a Pentium
M 1.6 GHz processor and 512 MB of RAM using these operating systems. The results are
presented in three graphs, each comparing different situations. The averaged data have been
included as Table 7 in appendix B.1, while the raw measurements can be found in the
measurements/benchmark/benchmark-raw-data.txt file on the CD-ROM.

It is important to note that I have not used KQEMU when measuring QEMU's
performance. This kernel module speeds up emulation by executing some code directly. As
explained before, this does not fit well with the MINIX philosophy of having a small and
reliable kernel. For this reason, amongst others, I have not ported it to MINIX. For the
benchmarks, KQEMU is not used on Linux either as this would make the results
incomparable and would obscure the ways in which MINIX could be improved.

In this section, I first discuss how well MINIX performs as a guest operating system. I
highlight the bottlenecks and attempt to explain them. Next, the impact of QEMU emulation
and the performance of MINIX as a host operating system are considered. The performance
impact of using the deterministic mode and of running QEMU recursively are also briefly
discussed. Finally, the influence of the HZ constant is tested.

Performance of MINIX as a guest operating system

Figure 14 compares MINIX' and Linux' performance as guest operating systems. They have
been compared both when running natively (as a reference point) and when running on
QEMU, which in turn runs on MINIX. This allows one to determine the strong and weak
points of both operating systems, providing a basis for further analysis.

The largest differences between MINIX and Linux are found to be disk input and output,
floating point arithmetic and graphics. In particular, Linux is shown to be 4596 times faster
than MINIX when it comes to scattered disk reads. This difference shows that Linux is not, in
fact, performing much disk IO at all. This is caused by different approaches to disk caching,

86

which can be seen by adjusting the size of the file used in the benchmark. While MINIX has a
fixed disk cache buffer in the file system server, Linux uses free memory to store disk blocks
and may swap out uncommonly memory pages to accommodate even more disk blocks. The
result is a vast disk cache that can accommodate all blocks that the benchmark previously
read, while MINIX replaces the blocks before the time they are needed again due to lack of
cache space. MINIX is fast if the file is reduced to be smaller than its disk cache, while Linux
slows down substantially when the benchmark file is made larger than the amount of
available memory.

The disk cache also holds dirty blocks to be written to disk at a later time, which explains
that the write benchmark is also much faster. With the sequential disk read and write
benchmarks, MINIX also profits from its cache which reduces Linux' lead substantially. The
differences are also smaller for the emulated operating systems, which can be explained by
the fact that a additional layer of disk cache is added. This effectively increases available cache
for both operating systems as caching is done by both the host and the guest.

The fact that Linux is much faster at floating point arithmetic is due to the fact that MINIX
does not support the floating point x86 instructions. Instead, the compiler generates calls to
library functions that perform the computations using integer arithmetic. This is much
slower than using hardware-supported floating point operations. The difference is smaller
when emulated, but it still exists. Because QEMU is running on MINIX, floating point

87

ar
ith

m
et

ic
_f

lo
at

ar
ith

m
et

ic
_i

nt

bl
en

de
d_

co
m

pi
le

m
in

ix

flo
w

_c
al

l

flo
w

_c
on

di
tio

na
l

flo
w

_e
xc

ep
tio

n

flo
w

_j
um

pt
ab

le

flo
w

_s
ys

ca
ll

flo
w

_t
as

ks
w

itc
h

io
_d

is
k_

re
ad

_r
an

do
m

io
_d

is
k_

re
ad

_s
eq

ue
nt

ia
l

io
_d

is
k_

w
rit

e_
ra

nd
om

io
_d

is
k_

w
rit

e_
se

qu
en

tia
l

io
_d

is
pl

ay

io
_n

et
w

or
k_

la
te

nc
y

io
_n

et
w

or
k_

th
ro

ug
hp

ut

m
em

or
y_

lo
ad

_r
an

do
m

m
em

or
y_

lo
ad

_s
eq

ue
nt

ia
l

m
em

or
y_

st
or

e_
ra

nd
om

m
em

or
y_

st
or

e_
se

qu
en

tia
l

0.1

1.0

10.0

100.0

1000.0

10000.0

Slow dow n: native MINIX
compared to native Linux
Slow dow n: MINIX on MI-
NIX compared to Linux on
MINIX

S
lo

w
do

w
n

Figure 14: MINIX vs. Linux as a guest platform

arithmetic is done by a library in both cases but with Linux it runs natively using QEMU's
floating point library while with MINIX the library is on the virtual machine and is therefore
emulated.

Regarding graphics, Linux is considerably faster than MINIX when running natively but
this difference largely disappears when the operating systems are emulated by QEMU. There
are two differences that may explain this. First, Linux supports kernel graphics drivers that
can access the hardware directly, while in MINIX the graphics drivers are part of X11 and are
completely in user space. Second, it appears that MINIX does not have a driver to support the
graphics chip on the test machine well and falls back to a default driver. Linux, on the other
hand, has a specialized driver. The source code reveals that it uses hardware acceleration
provided by the video hardware to speed up drawing the screen. If one considers all
measurements (including those not compared in the graph here), it turns out that native
Linux is much faster (at least a factor 24) than all other configurations, which do not differ
nearly as much among each other. This suggests that hardware acceleration is the main
reason for the difference. This is only beneficial when the operating system supports it and
the machine drawing the graphics is able to directly access the hardware. The former is not
the case on MINIX as there is not specialized driver, the latter is not the case with QEMU as
the guest draws the screen leaving the host with only a buffer filled with pixel data.

The most important differences have now been discussed but some smaller ones remain to
be explained. In particular, flow_exception, flow_syscall and flow_taskswitch are
considerably slower on MINIX in both configurations. These benchmarks have in common
that they include many task switches on the guest side. flow_exception switches to the kernel
when an invalid operation is performed and then goes through the process management
server to deliver a signal. Eventually the process manager is called again (through the kernel)
to restore the situation prior to the exception. On Linux, which has a monolithic design, these
tasks are performed directly by the kernel and switches between the kernel and process
manager are not needed. Similar arguments go for flow_syscall and flow_taskswitch, both of
which spend most of their time performing system calls. The results show that the additional
context switches incur a substantial performance overhead in both configurations.

The last remaining benchmarks which perform substantially worse on MINIX are the
memory benchmarks, but only when performing scattered memory accesses and only when
running natively. The most important factor influencing memory access are the CPU caches,
which are substantially faster than the main memory. Since there is no difference for
sequential access, it appears that the main difference is that in Linux cache entries are
retained for a longer time and there are therefore more cache hits; memory caching clearly is
functional in MINIX when memory access is sequential. The factor ten difference found by
the benchmark suggests that substantial amounts of cache are lost. This has to happen in the
clock interrupt handler as this is the only way in which the operating system comes into the
loop while performing the test. When looking at opcode histogram data collected by QEMU,
it is notable that the LLDT instruction is used by MINIX but not by Linux. This instruction is
executed on each interrupt and replaces the segment table for a user process (the local
descriptor table). It seems plausible that this would affect caching. To verify whether the LLDT
instruction is indeed the cause of the difference, I have reduced the number of times it is
used and considered the impact. This procedure is described in appendix B.2. My conclusion
is that the LLDT instruction is not the cause of the difference, which leaves the performance

88

gap unexplained. More research will be needed to determine why scattered memory
operations are slow on MINIX.

Most of the remaining benchmarks have a slow-down factor close to one, meaning that
there is little difference between the operating systems. It is notable that MINIX is slightly
faster in a few cases. These are all benchmarks that do not use any operating system operating
system services. This suggests that the overhead of the handling of timer interrupts explains
the difference, as this is the only way in which the operating system interferes if it is not
actively called and there is no other input. By default, MINIX programs the system clock to
receive 60 ticks per second while Linux requests 250 ticks per second. As is shown in a
separate sub-section, handling clock ticks does indeed take significant time away from useful
processing. Although Linux is slightly more efficient when compared at the same clock
frequency, the difference is so small that MINIX at 60 Hz is clearly faster than Linux at 250
Hz. This shows that there is a trade-off between speed and accurate time measurement.

Within the category of benchmarks that does not (directly) use operating system services,
flow_call is a notable exception. Unlike the others MINIX is performs badly at it, but only
when running on QEMU. Using the opcode histogram feature, this can be found to happen
because the generated code contains additional instructions to add the stack segment base on
stack references. This is optimized out on Linux, where segmentation is not used and each
segment has base zero. Linux uses paging instead to isolate processes from each other. The
flow_call benchmark performs recursive function calls, causing many stack references. This
explains that the difference is particularly noticeable for this specific benchmark.

All in all, there are some areas where MINIX performs substantially worse than Linux as a
guest operating system. These differences are more pronounced when running natively than
when running on QEMU. Most performance differences could be explained from differences
in design choices made for Linux and MINIX, with the Linux generally going with the
approach that focusses on performance. Most of these issues are not inherently tied with the
microkernel and it is probably possible to resolve them within this framework. I was unable to
determine why scattered memory accesses are slower on MINIX than Linux when running
natively; this warrants further research to be able to find out whether the difference can be
addressed.

Performance of QEMU itself

Figure 15 shows the impact of emulation, comparing the operating systems running natively
with them being emulated by QEMU. This allows one to assess the strong and weak points of
QEMU itself and determine whether, given certain performance requirements, using virtual
machines is feasible. For maximal comparability, native Linux is compared with Linux on
Linux while native MINIX is compared with MINIX on MINIX.

On average, the benchmarks have slow-down factors close to ten. The blended benchmark,
which recompiles MINIX from source, is also just above the 10× slow-down mark. This
benchmark is a better approximation of real-life usage patterns than the others, which
suggests that the slow-down factor experienced in practice will be close to ten as well. This
base slow-down can be explained from the fact that the original code is not run directly, but
rather dynamically translated into a version that interacts with QEMU's CPU state stored in
memory. This means that more instructions are needed and that memory is used rather CPU
registers. Profiling shows that code translation itself does not have much of an impact on

89

performance. Previously translated basic blocks are stored in a large cache organized as a
hash table, so they can quickly be retrieved later on.

It is notable that the slow-down for the integer benchmark is considerably lower than for
the floating point benchmark. This is the case even for MINIX, which emulates the FPU using
integer arithmetic. A glance at the opcode histograms reveals that the opcodes used by the
arithmetic_float benchmark on MINIX are very diverse, while a large part of the
arithmetic_int benchmark are conditional branching instructions. The latter benchmark
tests whether integers are prime in an inefficient way, namely by attempting to divide them
by all integers from 2 up to their square root. This does indeed involve much conditional
branching. Moreover, these branches are hard to predict. Hence it turns out that, on MINIX
the floating point benchmark actually provides a better test for integer arithmetic than the
integer benchmark does. Hard-to-predict branching instructions are slow to execute even
natively. The CPU attempts to predict the path taken and speculatively executes the
instructions on the expected path of execution, so incorrect predictions require instructions
to be rolled back. This incurs a large performance penalty for modern CPUs, which have large
pipelines. Hence the added overhead of emulation is relatively less, causing a lower slow-
down. A similar slow-down factor can be observed for the flow_conditional benchmark,
which also focusses on conditional branching instructions. Some of the branches in this
benchmark are more predictable than those in the arithmetic_int benchmark, which
explains the fact that its slow-down is slightly higher.

The slow-down for flow_call is typical for Linux, but somewhat on the high side for
MINIX. As mentioned before this is due to the fact that MINIX has a nonzero stack segment
base. This causes additional instructions to be generated for adding this base on any stack
memory reference.

The flow_exception, flow_syscall and flow_taskswitch benchmarks all involve context
switches. On MINIX, multiple user processes are involved in each of these benchmarks since
the process manager is always involved. On Linux process management is performed by the
kernel, so that the flow_exception and flow_syscall benchmarks only call the kernel and
return to the same process. It is clear that the benchmarks switching between user processes
experience severe slow-down, while those involving only kernel calls are close to the default
slow-down factor of ten. On MINIX, a task switch involves changing the local segment table
while on Linux it requires activating a different page table. Neither is needed when switching
between the kernel and a user process. This involves invalidating some memory-related
caches, although changing the page table has considerably more impact because the entire
translation look-aside buffer (TLB) becomes invalid. This buffer caches page table entries and
is important for performance of the memory management unit (MMU). To rebuild it costs
time both for a physical CPU and for QEMU, but the latter is affected most as it has to do the
translations entirely in software. This involves looking up pages in the page table and
determining access rights on memory accesses after the flush. This explains that context
switches increase the slow-down and in makes clear why the slow-down is particularly large
for the flow_taskswitch benchmark on Linux.

90

Regarding disk input and output, it is notable that slow-downs are typical for Linux but
very small for MINIX. As noted during the previous comparison, this can be explained from
the different implementations of disk caching between the operating systems; while Linux
has a vast amount of memory available to store disk blocks and speed up reading and writing,
the small and fixed cache used by MINIX is insufficient to accommodate the file used for the
benchmark. As a result, MINIX spends nearly all its time reading disk blocks, which is so slow
that it eclipses the slow-down caused by QEMU. Linux, on the other hand, barely spends any
time waiting for the hard disk, which explains that slow-down rates do not differ much from
the other benchmarks. The random-access benchmarks operate on small block of data and
involve more switches to the kernel, while the sequential benchmarks transfer more data.
This explains that the former experience much slow-down like the context switching
benchmarks, while the latter are affected to a lesser extent and are closer to the memory
benchmarks.

As mentioned in the previous sub-section, the large slow-down on Linux for the io_display
benchmark can be explained from the use of hardware acceleration when Linux runs natively.
This cannot be used when running on QEMU, causing a substantial slow-down for drawing
graphics.

Network latency is barely affected by emulation, while throughput is substantially lower on
emulated MINIX. The former is easily explained; the time it takes for the another host to
respond over the network is so large that the overhead of emulation is small in comparison. A
similar reasoning applies to throughput on Linux, which also experiences little slow-down. A

91

ar
ith

m
et

ic
_f

lo
at

ar
ith

m
et

ic
_i

nt

bl
en

de
d_

co
m

pi
le

m
in

ix

flo
w

_c
al

l

flo
w

_c
on

di
tio

na
l

flo
w

_e
xc

ep
tio

n

flo
w

_j
um

pt
ab

le

flo
w

_s
ys

ca
ll

flo
w

_t
as

ks
w

itc
h

io
_d

is
k_

re
ad

_r
an

do
m

io
_d

is
k_

re
ad

_s
eq

ue
nt

ia
l

io
_d

is
k_

w
rit

e_
ra

nd
om

io
_d

is
k_

w
rit

e_
se

qu
en

tia
l

io
_d

is
pl

ay

io
_n

et
w

or
k_

la
te

nc
y

io
_n

et
w

or
k_

th
ro

ug
hp

ut

m
em

or
y_

lo
ad

_r
an

do
m

m
em

or
y_

lo
ad

_s
eq

ue
nt

ia
l

m
em

or
y_

st
or

e_
ra

nd
om

m
em

or
y_

st
or

e_
se

qu
en

tia
l

0.1

1.0

10.0

100.0

Slow dow n: Linux on
Linux compared to native
Linux
Slow dow n: MINIX on
MINIX compared to nati-
ve MINIX

S
lo

w
do

w
n

Figure 15: Slow-down caused by emulation

more typical slow-down is found on MINIX, which suggests that overhead per byte sent or
received over the network is much larger than on Linux. Comparison of all measurements
shows that the throughput benchmark is slow if and only if MINIX is used as a host OS.
Using a packet sniffer on the MINIX side, one quickly notices that the bad performance is
caused by occasional one-second pauses in the outgoing data. This always occurs in the
following pattern:

1. The client (benchmark program) sends a packet not containing a full payload with the
'push' flag set;

2. The server acknowledges the packet of data;

3. Nothing happens for approximately one second, counting from step 1;

4. The client sends a packet containing little data, often just a single byte, with the 'push'
flag set;

5. The server acknowledges the packet of data;

6. Normal operation continues.

The pauses are also clearly visible if one plots the amount of data sent against the time
elapsed. Figure 16 shows that nearly all time is spent waiting. The first wait occurs after 45056
bytes have been sent and each subsequent pause after exactly 40960 more bytes. Most packets
carry the maximum of 1260 bytes of data, so this is not a multiple of the packet size. It is,
however, ten times the send buffer used in the benchmark.

92

Figure 16: Amount of data sent in the io_network_throughput benchmark

0 2 4 6 8 10 12
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

time elapsed (s)

da
ta

 s
en

t (
by

te
s)

It is clear that the TCP driver is intentionally waiting before sending the rest of the data,
while the packets received do not provide any reason for this. At the time of the wait, all
outgoing packets have been acknowledged by the server and the window size allows many
more packets to be sent without delay. This suggests that Nagle's algorithm may be involved.
This algorithm causes packet sending to be delayed in certain circumstances to avoid sending
small packets. Unfortunately MINIX does not support the TCP_NODELAY socket option to
disable Nagle's algorithm, which makes it harder to test whether this is the origin of the
problem. It does, however, have the NWIOTCPPUSH ioctl code which causes queued data for a
TCP socket to be sent. Adding this call after each write should bypass Nagle's algorithm as
well. I have tried this and found that it does not solve the problem, so Nagle's algorithm is not
to blame.

More research will be needed to find out why MINIX waits for such long periods of time
while sending out data. It should be noted that the network card on the computer used to
perform the tests is not supported by MINIX, so I had to modify the Intel Pro/100 driver to
include support for it. The modified driver is found on the CD-ROM in the /minix/minix-
3.1.2a-fxp directory. Although it is possible that the driver would cause problems, I do not
consider this to be likely. The packet sniffer shows that incoming packets are received
correctly and that MINIX does not respond to them in a timely manner, which is a sign that
the TCP driver is the more likely to be the cause of the problem.

Since QEMU is configured to emulate the memory management unit (MMU) in software,
lack of hardware support for page translation is an additional factor causing slow-down. This
explains the fact that Linux performs much worse on the random-access memory
benchmarks than MINIX; Linux actively uses paging while MINIX disables it. This is
compensated in part by using a translation look-aside buffer (TLB) to store translated pages,
but this approach is effective only if successive memory accesses refer to the same pages. This
is the case for the sequential benchmark, where MINIX and Linux suffer from similar slow-
downs, but not for the random-access benchmarks.

The fact that, for MINIX, the slow-down is relatively low for the random-access memory
benchmarks can be explained by the role of caching. Sequential memory accesses profit from
the level 1 and level 2 CPU caches, which speeds up access substantially when running
natively. This means that the overhead added by QEMU is relatively more when compared to
the slower random-access memory references that do not benefit from CPU cache.

Performance of MINIX as a host operating system

Finally, Figure 17 compares MINIX and Linux as host operating systems. This shows in which
areas the port performs well and in which it is lacking. Many benchmarks do not show a
meaningful slow-down or speed-up, which shows that they do not depend on the host
operating system. The blended_compileminix benchmark has only a minor slow-down when
emulated by MINIX, which suggests that the benchmarks where no difference is observed are
dominant regarding real-world performance. I now turn to the benchmarks that do show a
difference to be able to determine what causes them.

The first difference is the arithmetic_float benchmark. A Linux virtual machine performs
much worse at this test when running on top of MINIX than when running on top of Linux.
This is due to the lack of floating point support in MINIX, which causes QEMU to use library
routines to perform the floating point computations on the Linux guest machine. When

93

MINIX is running as a guest, the host platform does not make much of a difference because
the guest never uses any floating point instructions. In this case the floating point library
runs on the guest and the host operating system does not make much of a difference.

The flow_exception, flow_syscall and flow_taskswitch benchmarks have in common that
they use interrupts to shift control from a user process to the kernel on the guest machine.
QEMU implements these interrupts using the setjmp/longjmp pair to escape from the
generated code back to the main loop. The fact that benchmarks involving interrupts are
consistently slower on MINIX suggests that these functions perform badly on MINIX. These
calls involve more context switches on MINIX, where they are handled by a separate user-
mode process manager, than in Linux, where they are processed completely by the kernel.

The disk benchmarks are substantially slower when MINIX is used as a host platform. As
explained before, Linux has a disk cache that is typically orders of magnitude larger than
MINIX' disk cache. This can be shown by making QEMU log the amount of time spent on
reading and writing. Using the io_disk_read_random benchmark as an example, a MINIX guest
reads 2386 disk blocks while Linux does not need to read a single disk block as all have been
retained in the cache from the time at which they were written. Caching also makes a
difference at the host side; a Linux host reads all blocks from the cache and takes only 27.5
ms, while MINIX reads them from disk, using 11797.3 ms. This causes the disk benchmarks to
perform substantially worse when MINIX is used as a host platform, in particular when the
guest platform is also MINIX. This effect is less for the sequential benchmarks than for the
random-access benchmarks, as the former can benefit even from a small cache.

94

ar
ith

m
et

ic
_f

lo
at

ar
ith

m
et

ic
_i

nt

bl
en

de
d_

co
m

pi
le

m
in

ix

flo
w

_c
al

l

flo
w

_c
on

di
tio

na
l

flo
w

_e
xc

ep
tio

n

flo
w

_j
um

pt
ab

le

flo
w

_s
ys

ca
ll

flo
w

_t
as

ks
w

itc
h

io
_d

is
k_

re
ad

_r
an

do
m

io
_d

is
k_

re
ad

_s
eq

ue
nt

ia
l

io
_d

is
k_

w
rit

e_
ra

nd
om

io
_d

is
k_

w
rit

e_
se

qu
en

tia
l

io
_d

is
pl

ay

io
_n

et
w

or
k_

la
te

nc
y

io
_n

et
w

or
k_

th
ro

ug
hp

ut

m
em

or
y_

lo
ad

_r
an

do
m

m
em

or
y_

lo
ad

_s
eq

ue
nt

ia
l

m
em

or
y_

st
or

e_
ra

nd
om

m
em

or
y_

st
or

e_
se

qu
en

tia
l

0.1

1.0

10.0

100.0

Slow dow n: Linux on MI-
NIX compared to Linux on
Linux
Slow dow n: MINIX on MI-
NIX compared to MINIX on
Linux

S
lo

w
do

w
n

Figure 17: MINIX vs. Linux as a host platform

The impact of MINIX as a host operating system on graphics, network throughput and
random memory access was discussed previously. MINIX uses a generic driver for the display,
making hardware acceleration impossible. The effect is not nearly as dramatic as the
difference between native and emulated Linux because hardware acceleration is mainly useful
for drawing, but apparently a specialized driver is also better at just getting the pixels to the
video card. Additionally MINIX does not support the FPU, MMX and SSE instruction sets and
for this reason assembly routines have been disabled in SDL, causing further slow-down
compared to Linux. Network throughput is low due to occasional one-second pauses when
MINIX is used as a host operating system. The bad performance for scattered memory
accesses was blamed on cache flushes, although it is unclear why this happens.

Impact of the deterministic mode

As has been discussed previously, a 'deterministic mode' has been added to QEMU. If QEMU
is configured to use this by specifying --enable-deterministic to the configure script, it avoids
using the setitimer function. Instead, guest time and clock interrupts are based on the
number of instructions executed by the guest. For each translated basic block, a test is added
to determine whether a clock interrupt should be delivered. This slows down the program,
but has the following advantages:

• There is no need to add the setitimer function to MINIX;

• Clock interrupts are delivered more accurately for guest operating systems that request
high frequencies, as they no longer depend on the clock resolution of the host;

• It is possible to reproduce the exact same execution of a virtual machine any number
of times, because no factors external to the guest influence timing.

To determine whether it is feasible to use this mode as a default, I have compared its
performance to that of the regular QEMU running on MINIX. The results are shown in Figure
18. Since my aim is only to determine whether deterministic mode is suitable as a default, I do
not discuss the per-benchmark differences in-depth. The overall slow-down factor, as
measured by the benchmark which re-compiles MINIX, is just below 1.5. Benchmarks that
involve much branching are affected most by the deterministic mode. This is due to the fact
that these benchmarks have smaller basic blocks, which means that the instruction count
must be updated and checked more often. The disk benchmarks also suffer from
deterministic mode, but only with a Linux guest. Since it was found before that Linux does
not have to wait much for the disk due to its large disk cache, this means that the code to
retrieve blocks from the cache has many branches as well. All in all, the performance penalty
is not extreme but is too high for making deterministic mode the default configuration.
Adding the setitimer system call to MINIX and having less accurate timers on the guest is
more acceptable than this performance loss.

95

Recursive emulation

To test whether recursive emulation—running QEMU within QEMU—is feasible, I installed
QEMU on the MINIX QEMU image and used it to run that same image. Although this may
not have much practical benefit, it is important theoretically that recursive emulation is
possible. If it can be done, this shows that the emulated environment is in a way equivalent to
the host computer. I compiled MINIX at all levels to determine the slow-down factor of
recursive emulation. Using the regular benchmark suite to compare performance was not
feasible since it takes too much time when going through two layers of emulation. I used the
following steps to measure performance:

cd /usr/src/tools
make clean
time make image

The time command executes make image, which causes MINIX to be recompiled, and displays
the amount of time this took afterwards. It distinguishes between real time, user time and
system time. User time refers to the amount of time the process itself has been running and
system time to the amount of time the operating system has been working on its behalf,
excluding waiting time.

96

ar
ith

m
et

ic
_f

lo
at

ar
ith

m
et

ic
_i

nt

bl
en

de
d_

co
m

pi
le

m
in

ix

flo
w

_c
al

l

flo
w

_c
on

di
tio

na
l

flo
w

_e
xc

ep
tio

n

flo
w

_j
um

pt
ab

le

flo
w

_s
ys

ca
ll

flo
w

_t
as

ks
w

itc
h

io
_d

is
k_

re
ad

_r
an

do
m

io
_d

is
k_

re
ad

_s
eq

ue
nt

ia
l

io
_d

is
k_

w
rit

e_
ra

nd
om

io
_d

is
k_

w
rit

e_
se

qu
en

tia
l

io
_d

is
pl

ay

io
_n

et
w

or
k_

la
te

nc
y

io
_n

et
w

or
k_

th
ro

ug
hp

ut

m
em

or
y_

lo
ad

_r
an

do
m

m
em

or
y_

lo
ad

_s
eq

ue
nt

ia
l

m
em

or
y_

st
or

e_
ra

nd
om

m
em

or
y_

st
or

e_
se

qu
en

tia
l

0.1

1.0

10.0

Slow -dow n of determinis-
tic mode w hen running a
Linux on MINIX
Slow -dow n of determinis-
tic mode w hen running a
MINIX on MINIX

Figure 18: Slow-down of deterministic mode compared to default mode on MINIX

The resulting timings are shown in Table 6. These figures are all based on a single
measurement and are therefore less reliable than the previous results. The first layer of
emulation causes a slow-down factor just over ten, consistent with the previous results using
the Benchmark program. The slow-down for the second layer of emulation is considerably
larger; it is over 25 times slower than the benchmark running directly in QEMU.

The x86 architecture has only eight general purpose registers, three of which are used to
store temporary registers T0, T1 and A0 used by QEMU and a fourth of which is used to store a
pointer to the CPU context. The stack pointer, although considered a general purpose register,
is unavailable for general use because it must point to a valid location on the stack when
signals are received. The three remaining registers, EAX, ECX and EDX, are not preserved
between function calls and therefore cannot be used for long-term storage. As a result, none
of the registers of an x86 guest can be stored in x86 registers on the host. They are all stored
in memory, which means that code generated by QEMU uses contains more memory
references than would generally be the case. This is a consequence of the limitations of the
x86 architecture and the fact that guest operations have been implemented in C rather than
in assembly to increase portability.

Based on the reasoning in the previous paragraph, one finds that each register reference at
the second layer causes a memory reference at the first layer of emulation. It was also found
before that memory references on a MINIX guest are relatively slow on MINIX because it uses
segments with nonzero bases. These have to be added to determine the actual address to be
read from or written to. Hence, at the native layer, the resulting code has much overhead. The
flow_call benchmark, which has many memory references to the stack, was found to
experience a large slow-down due to this added overhead. This appears to explain why the
second level of emulation adds a slow-down factor that is considerably larger than the first.

Impact of the HZ constant

The measurements to determine impact of the clock frequency on the overhead of the
operating system have been performed in various configurations:

• Unmodified MINIX (running with a 60 Hz clock);

• MINIX with the HZ constant set to 250 Hz but otherwise unmodified;

• MINIX patched to use a variable clock frequency, which has to be a divisor of 2400 Hz;

• Unmodified Linux (running with a 250 Hz clock);

• Windows XP (running with a 100 Hz clock);

• Windows Vista (running with a 64 Hz clock).

By comparing the results, it is possible to estimate the impact of the clock frequency, the
variable clock frequency patch and the operating system as a whole. In each situation, the

97

Table 6: Performance of recursive emulation;
time to recompile the MINIX image in seconds

real
native 8,08 2,96 1,23
QEMU 84,85 53,86 30,55
QEMU on QEMU 2150,56 1388,80 665,63

user system

operating system overhead has been computed. I define this as the decrease in the amount of
work that can be done in a fixed period of time due to operating system code executing, in
particular handling interrupts. Hence, a 0% overhead indicates that there is no operating
system and all sources of interrupts have been disabled, while 100% overhead means that no
useful work can be done because the operating system takes up all time. Each measurement
has been performed five times, computing the average to obtain more reliable results. These
averages as well as the overhead percentages computed from them have been included in
appendix B.3.

Figure 19 shows the overhead at various clock frequencies for the patched version of
MINIX. As was to be expected overhead increases linearly with clock frequency, so on average
each additional clock tick takes a fixed amount of time away from user processes. The slope of
the line, which indicates the impact of adding a single clock tick per second, is 7.29 10 -4 %/Hz.
This suggests that increasing the clock frequency to a few hundred Hz should not noticeably
decrease performance. The intercept indicates how much time would be used by the
operating system in the (hypothetical) case that there was no overhead from timer interrupts.
As the graph shows, the fixed overhead is 0.124%.

To put the numbers measured with the patched into perspective, they can be compared
with the other measurements. Unmodified MINIX has an overhead of 0.158% at 60 Hz and
0.292% at 250 Hz. These figures are only slightly below the ones measured for the patched
MINIX, which shows that the additions to make the clock frequency flexible do not impact

98

0 500 1000 1500 2000 2500 3000
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

Clock rate (Hz)

O
ve

rh
ea

d

Figure 19: Relationship between overhead caused by the operating system and timer frequency,
on MINIX patched to have a variable clock frequency

overhead much. Linux causes an overhead of only 0.262%, which is somewhat better than
MINIX at 250 Hz. This shows that the overhead on MINIX is higher than it needs to be, but
definitely not excessively high. Windows XP, on the other hand, has an overhead of 0.596% at
100 Hz. Windows Vista, run on different computer (AMD Turion 64 X2 TL-60, 2.0 GHz), has
1.402% overhead on the first core and 0.566% on the second despite a higher CPU frequency
and a clock frequency of only 64 Hz.

From the results, it is clear that clock ticks do not cause excessive overhead in MINIX. At
similar clock frequencies, MINIX performs slightly worse than Linux and much better than
Windows. The clock frequency could be increased to 600 Hz before it reached the overhead
level of Windows XP and well over 1000 Hz before it would cause as much overhead as
Windows Vista. This shows that increasing the clock frequency to be able to better run
QEMU might be worthwhile. A clock frequency of 250 Hz would allow it to accurately
emulate the operating systems tested here, while the performance impact of such a change
would most likely not be noticeable. However, before such a change could be made, the
previously described overflow that causes MINIX to crash after 231 clock ticks ought to be
fixed.

5.3 - Discussion
Both as a guest and as a host operating system, there are some areas where MINIX does not
perform as well as Linux. This chapter has revealed the kinds of tasks for which this is the case
and has discussed the main causes for some of these differences. In most cases, poor
performance can be explained by design decisions that have little to do with MINIX'
microkernel design. Even though a number of areas have been mentioned in which MINIX'
performance can be improved, it should be noted that in practical applications the difference
is much smaller because these features are not used as intensively as in the benchmarks.

I have found several ways in which MINIX can be improved to more closely match the
performance of its competitors without compromising the microkernel design. Graphics and
floating point computations can be sped up substantially by using the hardware acceleration
provided by respectively the graphics card and the FPU. The file system server can be
modified to use free memory for caching disk blocks, as the kernel already provides system
calls that would allow it to access this memory. Network throughput is low due to occasional
one-second pauses. Although more research will be needed to find out why MINIX behaves
this way, it is clear that context switches cannot cause such large delays.

The only meaningful performance difference that may be due to the microkernel design is
the fact that benchmarks which use signal handling or the setjmp/longjmp functions perform
badly. These features involve many task switches due to the fact that they are not handled
within the kernel. It is likely that their bad performance is related to this.

One difference of which the origin remains unclear is that fact that scattered memory reads
are slower on MINIX than on Linux. This is most likely due to the memory cache being
flushed more often. More research is needed to determine whether and why this happens. In
particular, it would be important to know whether this is inherent in the microkernel design
or is due to some system instructions that can be avoided. Although x86 provides
performance counters to measure how effectively the memory cache is used, MINIX does not
yet provide access to them. If this were added, it would make such performance issues easier
to debug.

99

Regarding QEMU timer accuracy, it has been found that the deterministic mode I
implemented in QEMU is too slow as a general solution to solve the issue. MINIX' handling
of clock interrupts is reasonably efficient however, so it would be feasible performance-wise
to increase the frequency of the clock. If the HZ constant were to be increased to 250 Hz this
would substantially improve the quality of QEMU's emulation. I have decided, however, not
to do this in the MINIX patch for now as it would cause MINIX' timekeeping variable to
overflow sooner, reducing the maximum possible uptime. This can be fixed first or
alternatively a tickless kernel can be implemented, which would provide even larger
advantages.

100

6 - Conclusions
My main finding is that it is possible to run virtualization software on MINIX. However,
having it run in an stable and efficient way does require that some changes be made to the
operating system. These changes are relatively small and do not deviate from MINIX' design
goals, so they can be merged into the source tree. Most changes involve adding system calls
that are generally available on other POSIX systems. These additions will also make other
ports easier to perform.

It has also been found that QEMU's performance is only slightly worse on MINIX than on
Linux for practical use, although there are some specific areas where MINIX performs poorly.
Each of these areas has been investigated, leading to recommendations for changes that could
take away performance bottlenecks. Examples are making use of hardware acceleration
wherever available and using free memory to increase the size of the disk cache. In some cases
my tests could not reveal the origin of the difference, but pointers have been provided for
future research to be able to find them. Few of the performance issues can be ascribed to
MINIX' microkernel design, which shows that there is potential for improvement within the
current framework.

It should be noted that I have chosen to have QEMU run entirely in user space on MINIX
and have compared it to the same situation on Linux. If QEMU has access to kernel mode, as
is possible on Linux by installing the KQEMU kernel module, it can achieve a substantial
performance gain by executing some guest code directly. Loading additional code into the
kernel is at odds with the MINIX philosophy, as it increases the probability of fatal kernel-
mode bugs. Hence MINIX is likely to remain an underperformer in the area of virtualization
when compared to operating systems that virtualize in kernel mode, although an alternative
may be to use recent instruction set additions for hardware-level virtualization. Using these
instructions, it is possible to protect the kernel even better than the kernel/user-mode
distinction allows.

For many purposes, QEMU is usable in practice on MINIX. The main issues that might
reduce usability are a lack of available of memory and poor performance. Regarding the first
issue I have added features (see section 3.4) and provided recommendations (see section 4.2)
that should allow problems due to a lack of available memory to be addressed. Moreover, this
issue will be eliminated when virtual memory is adopted in MINIX' stable branch. Whether
performance is sufficient depends on one's aims. QEMU is certainly fast enough to run
MINIX for debugging purposes and other simple tasks. Graphically browsing the Internet,
currently not natively possible in MINIX, is fast enough for practical use when running
Internet Explorer on Windows 98. A more up-to-date configuration, Mozilla Firefox running
on a recent version of Linux, is too slow to be useful in practice on my test system. It might,
however, be feasible on more recent hardware.

This project has made several contributions besides answering the research questions. It
has made virtualization available on MINIX and this thesis provides instructions for those
porting other software to this operating system. Moreover, it provides a list of possible
improvements to MINIX. Some of these recommendations would make porting software to
MINIX easier when implemented (see section 3.8), while others could improve its
performance while leaving its basic design intact (see section 5.3).

101

Bibliography
[1] A. Baratz. Virtual machine shootout: VMware vs. Virtual PC, Ars Technica, August 8,

2004, http://arstechnica.com/reviews/apps/vm.ars (visited July 23rd, 2009).

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauery, I. Pratt and
A. Warfield. Xen and the Art of Virtualization, Proceedings of the nineteenth ACM
symposium on Operating systems principles, ACM Press, New York, NY, USA, 2003, pp.
164-177.

[3] V. R. Basili and B. T. Perricone. Software errors and Complexity: An Empirical
Investigation, Communications of the ACM, ACM Press, New York, NY, USA, Volume
27, Jan. 1984, pp. 43-52.

[4] F. Bellard. QEMU, A Fast and Portable Dynamic Translator, Proceedings of the USENIX
2005 Annual Technical Conference, FREENIX Track, April 2005, pp. 41-46.

[5] F. Bellard. QEMU internals, http://www.nongnu.org/qemu/qemu-tech.html (visited
July 23rd, 2009).

[6] K. J. Gough. Stacking them up: a comparison of virtual machines, Proceedings of the
6th Australasian conference on Computer systems architecture, IEEE Computer Society,
Washington, DC, USA, 2001, pp. 55-61.

[7] J. Gray. Go green, save green with Linux, Linux Journal, Specialized Systems Consultants
Inc., Seattle, WA, USA, Volume 2008, Issue 168, April 2008, Article No. 1.

[8] Intel Corporation. Intel Virtualization Technology Specification for the IA-32 Intel
Architecture, C97063-002, April 2005, http://www.intel.com/cd/ids/developer/asmo-
na/eng/214273.htm (visited July 23rd, 2009).

[9] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture, order number 253665-027US, April 2008,
http://download.intel.com/design/processor/manuals/253665.pdf (visited July 23rd,
2009).

[10] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, N-Z, order number 253667-027US, April 2008,
http://download.intel.com/design/processor/manuals/253667.pdf (visited July 23rd,
2009).

[11] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1, order number 253668-027US, July 2008,
http://download.intel.com/design/processor/manuals/253668.pdf (visited July 23rd,
2009).

[12] P. H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent root, Proceedings of
the 2nd International System Administration and Networking Conference, 2000,
http://phk.freebsd.dk/pubs/sane2000-jail.pdf (visited July 23rd, 2009).

[13] I. Kelly. Porting MINIX to Xen, May 8, 2006,
http://choices.cs.uiuc.edu/cache/Report.pdf (visited July 23rd, 2009).

102

http://choices.cs.uiuc.edu/cache/Report.pdf
http://phk.freebsd.dk/pubs/sane2000-jail.pdf
http://download.intel.com/design/processor/manuals/253668.pdf
http://download.intel.com/design/processor/manuals/253667.pdf
http://download.intel.com/design/processor/manuals/253665.pdf
http://www.intel.com/cd/ids/developer/asmo-na/eng/214273.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/214273.htm
http://www.nongnu.org/qemu/qemu-tech.html
http://arstechnica.com/reviews/apps/vm.ars

[14] E. van der Kouwe and J. F. de Smit. Code execution absurdity in Minix. Usenet thread on
comp.os.minix, April 16, 2008. Available from Google Groups at
http://groups.google.com/group/comp.os.minix/browse_thread/thread/d6aa9790f2567
11e/a15e6facce08c4f1 (visited July 23rd, 2009).

[15] M. Krasnyansky. Universal TUN/TAP device driver. 2000.
http://www.kernel.org/pub/linux/kernel/people/marcelo/linux-
2.4/Documentation/networking/tuntap.txt (visited July 23rd, 2009).

[16] J. LeVasseur, V. Uhlig, M. Chapma, P. Chubb, B. Leslie and G. Heiser. Pre-Virtualization:
Slashing the Cost of Virtualization, Technical Report PA005520, National ICT Australia,
October 2005, http://ertos.nicta.com.au/publications/papers/LeVasseur_UCCLH_05-
tr.pdf (visited July 23rd, 2009).

[17] G. J. Popek and R. P. Goldberg. Formal Requirements for Virtualizable Third Generation
Architectures, Communications of the ACM, ACM Press, New York, NY, USA, Volume
17, Issue 7, July 1974, pp. 412-421.

[18] J. S. Robin and C. E. Irvine. Analysis of the Intel Pentium's ability to support a secure
virtual machine monitor, Proceedings of the 9th USENIX Security Symposium, August
2000, pp. 129-144.

[19] J. E. Smith and R. Nair. The architecture of virtual machines, Computer, IEEE Computer
Society Press, Los Alamitos, CA, USA, Volume 38, Issue 5, May 2005, pp. 32-38.

[20] A. S. Tanenbaum. The MINIX 3 operating system. http://www.minix3.org/ (visited July
23rd, 2009).

[21] A. S. Tanenbaum and A. S. Woodhull. Operating Systems: Design and Implementation,
third edition. Pearson Prentice Hall, Upper Saddle River, NJ.

[22] The Open Group. The Authorized Guide to Version 3 of the Single UNIX Specification.
The Open Group, 2004.

[23] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V. Anderson, S. M.
Bennett, A. Kagi, F. H. Leung and L. Smith. Intel Virtualization Technology, Computer,
IEEE Computer Society Press, Los Alamitos, CA, USA, Volume 38, Issue 5, May 2005, pp.
48-56.

[24] D. Ung and C. Cifuentes. Machine-adaptable dynamic binary translation, ACM
SIGPLAN Notices archive, ACM Press New York, NY, USA, Volume 35, Issue 7, July 2000,
pp. 41-51.

[25] VMWare Inc. ESX Server 2 Security White Paper, 2004,
http://www.vmware.com/pdf/esx2_security.pdf (visited July 23rd, 2009).

[26] VMWare Inc. Virtualization Architectural Considerations and other evaluation criteria,
2005, http://www.vmware.com/pdf/virtualization_considerations.pdf (visited July 23rd,
2009).

103

http://www.vmware.com/pdf/virtualization_considerations.pdf
http://www.vmware.com/pdf/esx2_security.pdf
http://www.minix3.org/
http://ertos.nicta.com.au/publications/papers/LeVasseur_UCCLH_05-tr.pdf
http://ertos.nicta.com.au/publications/papers/LeVasseur_UCCLH_05-tr.pdf
http://www.kernel.org/pub/linux/kernel/people/marcelo/linux-2.4/Documentation/networking/tuntap.txt
http://www.kernel.org/pub/linux/kernel/people/marcelo/linux-2.4/Documentation/networking/tuntap.txt
http://www.kernel.org/pub/linux/kernel/people/marcelo/linux-2.4/Documentation/networking/tuntap.txt
http://groups.google.com/group/comp.os.minix/browse_thread/thread/d6aa9790f256711e/a15e6facce08c4f1
http://groups.google.com/group/comp.os.minix/browse_thread/thread/d6aa9790f256711e/a15e6facce08c4f1
http://groups.google.com/group/comp.os.minix/browse_thread/thread/d6aa9790f256711e/a15e6facce08c4f1

Appendix A - Contents of the CD-ROM
A CD-ROM containing source code and benchmark results is bundled with this thesis. The
contents of its directories are as follows:

/doc The thesis itself in PDF format;

/downloads Files downloaded by the install script;

/images The disk images that were used to benchmark QEMU;

/measurements Raw data resulting from the performance measurements;

/minix Patches for MINIX 3.1.2a to be able to run QEMU;

/qemu QEMU 0.8.2 for MINIX: source, binaries and install script;

/SDL SDL 1.2.13 for MINIX: source and binaries;

/utils Utilities used for benchmarking and testing.

Wherever relevant, each directory contains a file named contents.txt that indicates what can
be found in the files and/or subdirectories.

The directories for MINIX, QEMU and SDL contain complete copies of the source code,
patch files and archive files containing the source code. The complete copies of the source
code are most useful to browse through the source code, while the patches can be used to get
an overview of the changes I made. To be able to apply the patches, one needs to use the
correct version of the source code to be patched. Therefore, the original source code of these
programs is also provided on the CD-ROM. The archive is most useful if one wants to use the
patched source code on MINIX, because it is inconvenient to copy an entire directory using
the isoread tool.

The utils directory contains various utilities that have been created as a part of this project
and have been used to perform the experiments this thesis reports on. Each of them has a
Makefile that compiles all executables that are needed. The programs in the benchmark
subdirectory should be compiled using GCC 4, while the others can be compiled using the
default ACK compiler. Since for the benchmark program the C source files are compliant and
both ACK and GCC assembly files are provided, one could easily change the Makefile to allow
compilation using ACK. However, the results would no longer be comparable with those on
other platforms due to the fact that GCC performs better at optimization.

The utils/bench-hzctl directory contains the bench-hzctl program which has been used to
determine how much overhead the operating system causes at different clock frequencies. It
can be compiled on MINIX 3.1.2a, Linux and Windows (under Cygwin) to allow for
comparison between them. If the hzctl MINIX patch (found in /minix/minix-3.1.2a-hzctl on
the CD-ROM) is installed, performance is measured at multiple clock frequencies. These
clock frequencies are all divisors of the HZ constant, which the patch sets to 2400 by default.
In the same directory, the test-hzctl program is also provided. This program was used to test
the hzctl patch and would only be useful if one wants to make further changes to that patch.
It only compiles on patched MINIX and has therefore been left out of the Makefile.

The programs which have been used to coordinate benchmark runs in various
configurations is found in utils/benchdriver. The two executables are benchdriver and

104

benchdriverserver, the former of which is run on the host machine and the latter on the guest
machine. This server is included on the guest images in the images directory of the CD-ROM,
in which it is started at boot time. The benchdriver program makes a number of assumptions
on the configuration in which it is running:

• The QEMU source code should be available in /usr/src/qemu-0.8.2;

• The benchmark program should be available over FTP on the server identified by the
$SERVER_IP variable in benchdriver.sh;

• Disk images should be stored in /usr/_.

These locations can be found and changed in the following files:

• benchdriver.sh: FTP server address;

• benchdriver.c: commands and file names;

• config.h: directories.

The benchmark program itself is found in the utils/benchmark directory. This program also
comes with a server program, benchmarkserver, which is used by the network benchmarks.
When used with benchdriver, it should be run at port 1234 on the same computer that
provides the benchmark source code over FTP. If benchmark is run without having access to
benchmarkserver, the network-related benchmarks will fail.

Finally, utils/msniff provides a primitive packet sniffer for MINIX. It intercepts all
incoming and outgoing packets using the /dev/eth device and prints information about them
to the standard output. The output format and the level of detail can be specified on the
command line.

105

Appendix B - Performance measurements

B.1 - Benchmarking guest operating systems running on QEMU
Table 7 provides raw data on the benchmark results. These data are split by benchmark and
by configuration. Each number is the average of all runs measured for that particular
combination. As was described in section 5.1 on test methodology, there are at least five
measurements for each but more for benchmarks that take only a short time. In practice, the
average number of measurements per cell is 52 and only the benchmark which recompiles
MINIX has the minimal number of measurements on some configurations. This benchmark
takes longer than the others because it cannot be adjusted; the others have been configured
to assure that their runtime is neither so small that it causes inaccurate measurements nor so
large that only few measurements are possible in the available time. Many of the cells are
based on the maximum of 80 measurements.

It is important to note that the slow-down factors cannot be computed directly from these
data; for comparison purposes only measurements for which the sequence number matches
are used. Hence when comparing a cell with 40 measurements to one with only 30, the last 10
measurements are ignored. The raw data on the CD-ROM do include all cases and can be
used to reproduce the comparisons.

106

Table 7: Average run-times (in seconds) for each benchmark on each configuration

native default QEMU histogram QEMU
host OS

benchmark
0,003 0,395 0,083 6,189 0,484 6,049 0,089 8,054 0,492 8,158 0,129 25,127 0,527 24,709
0,990 0,877 3,570 3,472 3,197 3,215 4,635 4,656 4,415 4,240 6,868 6,845 6,526 6,608

7,845 75,661 88,978 116,435 129,956 224,687 236,251
4,996 4,995 4,996 4,989 21,225 5,007 4,180 5,331 8,412 7,601 4,997 4,997 20,937 5,030
4,999 4,995 4,999 4,992 20,857 4,998 6,104 5,440 0,149 1,701 5,000 4,998 20,811 4,996

flow_call 0,795 0,797 8,374 20,123 8,327 19,853 10,757 21,791 11,039 21,758 23,200 38,162 22,343 36,934
1,083 1,087 4,646 5,274 4,601 5,215 10,267 10,547 10,762 10,814 24,481 25,792 23,671 25,577
0,017 0,206 0,204 2,865 0,418 4,932 0,305 3,702 0,445 5,051 0,592 7,323 0,791 9,361
0,904 0,712 7,883 6,095 7,488 5,734 10,203 9,723 10,506 9,977 18,271 17,677 17,392 17,062
0,152 0,605 0,883 7,900 2,625 14,736 0,906 10,409 1,842 14,780 2,217 20,473 4,009 27,101
0,069 0,588 3,159 8,330 3,518 12,948 3,674 11,190 4,227 14,087 5,245 21,259 5,674 25,558
0,003 13,017 0,064 1,462 0,117 14,503 0,083 1,806 0,120 14,450 0,155 3,457 0,204 16,380
0,124 10,856 1,059 4,685 1,032 10,568 1,451 5,861 1,506 10,585 2,725 11,402 2,599 16,588
0,004 11,578 0,143 1,621 0,398 13,983 0,188 1,937 0,996 13,422 0,341 3,582 0,633 15,710
0,169 4,936 1,455 2,866 6,030 7,194 1,927 3,905 7,684 7,755 3,877 7,864 9,342 11,298
0,125 3,051 5,043 5,433 8,954 14,908 7,467 6,516 12,874 10,735 15,027 12,496 27,476 28,442
1,024 1,004 1,012 1,030 1,008 1,019 1,013 1,012 1,017 1,044 1,017 1,021 1,018 1,027
0,465 0,843 0,665 0,927 9,761 9,843 2,586 1,067 16,960 10,249 0,531 2,009 9,679 6,401
0,351 2,958 9,508 6,108 14,326 12,405 9,294 7,345 14,223 11,954 10,683 7,484 15,765 13,427
0,787 0,785 5,820 6,597 5,714 6,491 6,157 7,138 6,304 6,470 33,215 39,311 32,280 38,617

memory_store_random 0,554 5,075 6,556 4,069 7,901 6,180 6,530 4,426 7,907 6,123 7,438 5,027 8,670 6,794
0,486 0,484 7,717 8,368 7,570 8,197 7,833 8,409 7,937 8,396 20,544 24,476 19,840 23,867

configuration deterministic QEMU
linux minix linux minix linux minix

guest OS linux minix linux minix linux minix linux minix linux minix linux minix linux minix

arithmetic_float
arithmetic_int
blended_compileminix
calibrate_busy
calibrate_idle

flow_conditional
flow_exception
flow_jumptable
flow_syscall
flow_taskswitch
io_disk_read_random
io_disk_read_sequential
io_disk_write_random
io_disk_write_sequential
io_display
io_network_latency
io_network_throughput
memory_load_random
memory_load_sequential

memory_store_sequential

B.2 - Impact of the LLDT instruction

Changes made to MINIX

As described in section 5.2, I have found that scattered memory reads and writes are
substantially slower on MINIX than on Linux. The most likely cause of this was found to be
the use of the LLDT instruction in MINIX, which I expected to interfere with CPU caching of
main memory. To test whether this is indeed the case, I have modified the following code in
the kernel/mpx386.s MINIX source file:

_restart:

! Restart the current process or the next process if it is set.

cmp (_next_ptr), 0 ! see if another process is scheduled
jz 0f
mov eax, (_next_ptr)
mov (_proc_ptr), eax ! schedule new process
mov (_next_ptr), 0

0: mov esp, (_proc_ptr) ! will assume P_STACKBASE == 0
lldt P_LDT_SEL(esp) ! enable process' segment descriptors
lea eax, P_STACKTOP(esp) ! arrange for next interrupt
mov (_tss+TSS3_S_SP0), eax ! to save state in process table

This assembly code prepares a user process that is to be run after the kernel has handled an
interrupt. The new process has been selected in advance and _next_ptr points to its CPU
context. In many cases, however, the current process has not yet used up its quantum and this
variable is set to NULL to indicate that the current process need not be changed. Even in this
case, however, does the LLDT instruction reload the table containing local segment descriptors
for the process. This is unnecessary; the kernel itself does not use local segment descriptors
and therefore the LDT register is changed only when switching back to a user process, so if
_next_ptr == NULL then the old value is still valid. Therefore the line can safely be moved,
resulting in the following code (the line which was changed and moved is shown in boldface):

_restart:

! Restart the current process or the next process if it is set.

cmp (_next_ptr), 0 ! see if another process is scheduled
jz 0f
mov eax, (_next_ptr)
mov (_proc_ptr), eax ! schedule new process
mov (_next_ptr), 0
lldt P_LDT_SEL(eax) ! enable process' segment descriptors

0: mov esp, (_proc_ptr) ! will assume P_STACKBASE == 0
lea eax, P_STACKTOP(esp) ! arrange for next interrupt
mov (_tss+TSS3_S_SP0), eax ! to save state in process table

After this change, the LLDT instruction is executed only if a new process has been selected. If
LLDT interferes with the CPU memory cache, one would expect this to result in improved
performance on the scattered memory read/write benchmarks.

For the change to be as effective as possible, _next_ptr should be NULL often. In the default
implementation of the scheduler, however, this variable is set to a non-NULL value even if the
same process has been selected as before. This may happen if there is only one runnable

108

process or if one process has a higher priority than the others. In these cases, unnecessary use
of the LLDT instruction remains every time the process has consumed its quantum. This can
be addressed by changing the pick_proc function in kernel/proc.c. This is the function which
applies the scheduling policy. It originally contained the following loop:

 for (q=0; q < NR_SCHED_QUEUES; q++) {
 if ((rp = rdy_head[q]) != NIL_PROC) {
 next_ptr = rp; /* run process 'rp' next */
 if (priv(rp)->s_flags & BILLABLE)
 bill_ptr = rp; /* bill for system time */
 return;
 }
 }

To reduce the number of times that next_ptr is set, it can be changed as follows (boldface
marks the changed line):

 for (q=0; q < NR_SCHED_QUEUES; q++) {
 if ((rp = rdy_head[q]) != NIL_PROC) {
 next_ptr = (rp == proc_ptr) ? NULL : rp; /* run process 'rp' next */
 if (priv(rp)->s_flags & BILLABLE)
 bill_ptr = rp; /* bill for system time */
 return;
 }
 }

Performance impact

To determine whether the changes have an impact on performance, I have compared the
results of the memory benchmarks between regular MINIX 3.1.2a and a version of MINIX
3.1.2a in which the changes were applied. The LLDT instruction is executed approximately 60
times per second in the regular MINIX (on each clock tick). Since the quantum size for a user
process is eight clock ticks, the patched version executes the instruction at most 7.5 times per
second; it may not be executed at all if only a single process is runnable. Hence, if the LLDT
instruction is the cause of the difference in memory performance, the memory benchmarks
should run significantly faster with the patch applied. Tests do not provide any indication
that this is the case, so the hypothesis that LLDT causes the performance difference is not
supported by my measurements.

More research is needed to determine what else can explain the difference. One possible
approach would be to use the x86 performance counter registers. These allow one to obtain
statistics about low-level performance indicators, such as the number of cache hits and
misses, which could provide clues as to why Linux performs better than MINIX in this area.
This would require kernel support, as the WRMSR instruction needed to control the counters is
privileged. If the kernel allows an interface for applications to program the performance
counters, they can read them using the unprivileged RDPMC instruction.

B.3 - Benchmarking the impact of the clock frequency
In Table 8, benchmark results are provided for the test measuring the impact of the clock
frequency. Most measurements have been done with the dynamic clock frequency patch
applied. These frequencies are divisors of 2400, which is the value the patch uses for the HZ
constant. Two reference measurements have been included on unmodified MINIX, as well as
measurements on Windows XP and Windows Vista. It is important to note that the Windows

109

Vista measurements have been performed on an AMD Turion 64 X2 TL-60 at 2 GHz, while all
others were done using a Pentium M 725 at 1.6 GHz, which explains the difference in CPU
cycles per iteration; apparently the implementation of the RDTSC instruction is considerably
faster on the AMD CPU.

110

Table 8: Averaged performance measurements of various operating systems at various clock
frequencies

Operating system Clock frequency CPU cycles/iteration Overhead
Mean for 5 measurements Max. possible

Minix 60 43 99725571 99882960 0,158%
Minix 250 43 99591656 99882960 0,292%
Minix (patched) 20 43 99749005 99882960 0,134%
Minix (patched) 24 43 99741906 99882960 0,141%
Minix (patched) 25 43 99748562 99882960 0,135%
Minix (patched) 30 43 99739272 99882960 0,144%
Minix (patched) 32 43 99738630 99882960 0,144%
Minix (patched) 40 43 99725995 99882960 0,157%
Minix (patched) 48 43 99725593 99882960 0,158%
Minix (patched) 50 43 99726206 99882960 0,157%
Minix (patched) 60 43 99723378 99882960 0,160%
Minix (patched) 75 43 99701798 99882960 0,181%
Minix (patched) 80 43 99697512 99882960 0,186%
Minix (patched) 96 43 99689373 99882960 0,194%
Minix (patched) 100 43 99687968 99882960 0,195%
Minix (patched) 120 43 99667821 99882960 0,215%
Minix (patched) 150 43 99652383 99882960 0,231%
Minix (patched) 160 43 99640502 99882960 0,243%
Minix (patched) 200 43 99614066 99882960 0,269%
Minix (patched) 240 43 99578759 99882960 0,305%
Minix (patched) 300 43 99535874 99882960 0,347%
Minix (patched) 400 43 99465186 99882960 0,418%
Minix (patched) 480 43 99412915 99882960 0,471%
Minix (patched) 600 43 99315152 99882960 0,568%
Minix (patched) 800 43 99171257 99882960 0,713%
Minix (patched) 1200 43 98882554 99882960 1,002%
Minix (patched) 2400 43 98016450 99882960 1,869%
Linux 250 43 99620976 99882960 0,262%
Windows XP 100 43 99287422 99882960 0,596%

64 8 529345339 536870912 1,402%
64 8 533834494 536870912 0,566%

Iterations/232 CPU cycles

Windows Vista, 1st core
Windows Vista, 2nd core

	1 - Introduction
	1.1 - Context
	1.2 - Problem statement
	1.3 - MINIX
	1.4 - QEMU
	1.5 - Structure of this thesis

	2 - Virtualization
	2.1 - Introduction
	What is virtualization?
	Why are virtual machines useful?
	Server farms
	Software development
	Untrusted software
	Security research

	Theoretical background
	Possibility of efficient virtualization
	Virtualizability of IA-32

	2.2 - Possible approaches
	Dynamic Binary Translation
	Paravirtualization
	Previrtualization
	Operating system level partitioning
	Application virtual machine
	Hardware supported

	2.3 - QEMU implementation
	User-level memory management unit
	Code generation
	Moving code around
	Temporary registers and intermediate instructions

	No kernel-level components

	3 - Issues encountered and changes made
	3.1 - General
	3.2 - Changes made to MINIX
	Addition of the setitimer function
	Usage of setitimer
	Possible solutions
	Implementation of setitimer
	Timer resolution

	Implementation of the pread64 and pwrite64 functions
	Signal handling bug
	Use of the select function with the /dev/eth device

	3.3 - Porting QEMU
	General remarks on porting software to MINIX
	Different ioctl operations
	Hardware floating point arithmetic is not supported
	Lack of a loopback device
	Limited implementation of socket functions
	Memory allocations are more likely to fail
	NULL is a valid pointer
	Random branching when signals arrive

	Changes related to compilation
	Build script and configuration
	Removing references to missing headers, functions and fields
	Adding missing declarations
	Removing compiler warnings

	Changes related to code generation
	Changes related to networking
	Miscellaneous changes
	Dealing with failed memory allocations
	Determining the size of removable media
	Implementation of missing library functions
	Support for 64-bit integers in format functions

	Missing functionality
	COW disk image file format
	Linux-specific features
	Networking-related features
	Sound support

	3.4 - Features added in QEMU for MINIX
	Curses support
	Memory allocation recommendation
	Networking
	User mode networking
	Ethernet tap
	Virtual switch
	Implementation
	Usage

	Opcode histograms
	Running deterministically
	Simple profiling of QEMU

	3.5 - libSDL
	The configure and configure.in files
	Changes to SDL files
	Build file

	3.6 - Debugging QEMU
	Causing crashes to occur early
	Lack of double and triple fault
	Logging system calls
	Making the core file more readable
	Parallel testing
	Profiling supported by GCC
	Using MINIX' information server

	3.7 - Testing QEMU
	3.8 - Discussion

	4 - How to use QEMU on MINIX
	4.1 - Installing QEMU on MINIX
	What has to be done
	Installing using the installation script
	Installing manually
	Prerequisites
	Installing GNU Patch
	Patching MINIX
	Installing libSDL
	Installing QEMU itself

	4.2 - Running QEMU on MINIX
	Running the pre-made disk images
	Setting up a new virtual machine

	5 - Performance measurements
	5.1 - Methodology
	Measuring QEMU performance
	Measuring impact of the HZ constant

	5.2 - Results
	Performance of MINIX as a guest operating system
	Performance of QEMU itself
	Performance of MINIX as a host operating system
	Impact of the deterministic mode
	Recursive emulation
	Impact of the HZ constant

	5.3 - Discussion

	6 - Conclusions
	Bibliography
	Appendix A - Contents of the CD-ROM
	Appendix B - Performance measurements
	B.1 - Benchmarking guest operating systems running on QEMU
	B.2 - Impact of the LLDT instruction
	Changes made to MINIX
	Performance impact

	B.3 - Benchmarking the impact of the clock frequency

