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Abstract  5 

1. Abstract 

For years the default compilation toolchain of MINIX was the Amsterdam Compiler Kit. New to MINIX 

3 is the port of the GNU Compiler Collection which brings an alternative toolchain, which is actively 

developed and enjoys a large user base. In this paper a comparison of C compiler performance is 

presented, focusing on three aspects of performance; compilation speed, executable segment sizes, and 

execution speed. It is shown that compilation speed is several orders of magnitude slower for with gcc 

compared to ACK’s cc. Segment sizes vary with gcc generating larger segments on average, but with 

some programs which have smaller segment sizes in gcc. Execution speed is shown to be significantly 

faster with gcc in almost all cases, especially for CPU bound processes. 

 

2. Introduction 

With the release of MINIX 3, a number of applications that previously were unavailable to MINIX have 

been ported from other operating systems, like Linux. One of these ported applications was the GNU 

Compiler Collection. In the past, the main compiler which was available for MINIX was the Amsterdam 

Compiler Kit, originally written by Andrew S. Tanenbaum and Ceriel J.H. Jacobs. Because this compiler 

originated in the 1980s, and the continuous development and wide use of GCC, it is interesting to 

compare these compilers on MINIX. For this paper, the aspects that have been investigated and 

compared are the C compiler’s performance in three areas; compilation speed, executable segment sizes, 

and execution speed. Other aspects like code checking features and debugging functionality have not 

been taken into consideration, to limit the scope of the paper.  

The outline of this paper is as follows; the first section explains the measurement set-u, the three 

following sections deal with the measured aspects of performance, and finally the conclusions are 

presented. 

 

3. Measurement set-up 

This section describes what tools were used to measure the compilers performance in each field, and why 

these were selected.  Also how the measurements were taken is described. 

Operating system 

All measurements were done on MINIX version 3.1.2a, with all binaries from the CD installed. The 

measurements were all run as user root, this is necessary because the scripts need to run the chmem 

command on various compiler components. 

Compilers 

For these measurements, the c compiler of ACK, cc, was compared to the c compiler of the GNU 

Compiler Collection, gcc. Two versions of gcc were used, version 3.4.3 and version 4.1.1. Because 

compilation fails for some of the selected programs when using high optimization settings, various 
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components of the compiler needed more allocated memory. The following memory sizes were set with 

chmem to prevent compiling from failing; 

Table 1 - Compiler component sizes 

Compiler File Stack + malloc size 

cc /usr/lib/ego/bo 2 MB 

 /usr/lib/ego/ra 5 MB 

 /usr/lib/ego/cs 2 MB 

 /usr/lib/ego/cf 2 MB 

 /usr/lib/ego/sp 2 MB 

 /usr/lib/ego/sr 2 MB 

 /usr/lib/ego/ud 5 MB 

 /usr/lib/ego/lv 5 MB 

 /usr/lib/em_opt 512 kB 

 /usr/lib/em_opt2 512 kB 

 /usr/lib/em_cemcom.ansi 10 MB 

gcc /usr/gnu/i386-pc-minix/bin/ld 6 MB 

 /usr/gnu/libexec/gcc/i386-pc-minix/3.4.3/collect2 6 MB 

Optimization options 

To make a selection in optimization options (or flags), research in the possibilities was necessary. For cc, 

the man-page tells us that optimization options are as follows; 

Table 2 - ACK cc optimization options 

-O Optimize code.  This option is a no-op, because all 

the compilers already use the -O1 optimization level 

to get code of reasonable quality.  Use -O0 to turn 

off optimization to speed up compilation at debug 

time. 

-Olevel Compile with the given optimization level.  (MINIX 3) 

-OS 

-OT 

Optimize for space or for time.  (MINIX 3) 

 

During testing I noticed that -O0 and -O1 do not seem to differ in practice. Both options output identical 

executables, and compilation time is the same for both settings. For higher settings, -O3 seems to be the 

highest setting, since higher settings produce the same executable for the tested programs. The next 

higher setting -O4 does seem to use different options for optimization, since compilation failed with an 

out of memory error, where -O3 compiled without error. The options -OS and -OT are not supported, cc 

prints an error message.  

In contrast to cc, gcc provides a lot of specific optimization options (1) (2), providing fine grained control 

of the optimization used. Manually selecting these options requires a great deal of knowledge about 

compiler optimization strategies and their effectiveness on different types of code.  Gcc also provides 

presets in the same form as cc with -O flags, namely -O0, -O1 (or -O), -O2, -O3 and -Os. These presets 

cannot be combined, only the last specified preset will be used, so it is not possible to combine for 

example -O2 and -Os. For a complete description of the options used in each preset, and what the 

options do, see (1) and (2). 

In addition to these CPU independent optimization options, gcc also provides options to optimize the 

code for a specific CPU architecture (3). These options attempt to produce code that tries to tune the 

code (-mtune, -march) or allow the compiler to make use of special instructions available on the specific 

CPU architecture (-march). Using these settings can have consequences for the produced executable. The 
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-mtune setting produces code that does not use any CPU architecture specific instructions, so the 

produced executable can still run on other architectures. The -march setting makes CPU architecture 

specific instructions available to the compiler, and therefore can produce executables that fail to run on 

other architectures. 

The following optimization options were used in the measurements; 

Table 3 - Selected optimization options 

Compiler Optimization parameters 

cc -O1 (default) 

 -O2 

 -O3 

gcc -O0 (default) 

 -O1 

 -O2 

 -O2 -march=architecture 

 -O2 -mtune=architecture 

 -O3 

 -O3 -march=architecture 

 -O3 -mtune=architecture 

 -Os 

 -Os -mtune=architecture 

 -Os -march=architecture 

 

For cc, -O0 was omitted because it does not behave differently from -O1 which is the default setting. 

Optimization options higher than -O3 were omitted as well because the produced executables did not 

differ from the -O3 setting. For gcc, all options were used, and architecture options were used for -O2, 

-O3 and -Os. To limit the duration of the tests, architecture options were not used for the other settings. 

This selection was made because these settings do not attempt to optimize a lot. 

Measurement methodology 

Three aspects of compiler performance were measured; compilation speed, segment sizes and the 

execution speed of the compiled program.  

Used programs 

The speed measurements were done using a modified version of the time program found on MINIX. The 

original time program runs the specified command once, and when the command is finished, it prints the 

real, user, and system time in seconds rounded to two decimals. The modified program, called ccb_time1, 

times in clock ticks instead of seconds. Ccb_time performs timing in such a way that the specified 

command is run once, and is then looped for a number of times. By executing the command once before 

starting the loop, the command can take advantage of the file system cache in subsequent executions, 

thereby minimizing the effect of the disk speed on the timing. The command is looped for a minimum of 

N times (N is passed as parameter), and if after N times the real, user and system times are below 60 ticks, 

the loop continues to a maximum of 50 loops. For completely CPU bound commands, the 60 tick limit is 

optional for the system time to prevent unnecessary long loops. The output of ccb_time is appended in a 

comma separated format to a specified file. 

Size measurements were performed using a modified version of the size command called ccb_size. It 

appends its output to a specified file, like ccb_time, instead of printing to standard output. 

                                                      
1 ccb for c compiler benchmark 
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Compilation speed measurement 

The compilation speed was measured for each combination of compiler and optimization option 

parameters. To measure this, the selected programs were set up in such a way that the Makefile of each 

program uses the environment variables CCB_CC and CCB_OFLAGS for the compiler command and 

the optimization parameters respectively. For CCB_CC the ccb_time command combined with the 

compiler command was set like the following example; 

/path/to/ccb_time/ccb_time 5 output_file “gcc” "-O3 -march=pentium3" 

After the Makefile has been processed, the total time can be extracted by adding the results from the 

output file to give a total time spent by the compiler program. This means that the overhead of the make 

program, and other compilation related commands like ar (archiver) are not measured. 

Segment size measurement 

After compilation, the segment sizes can be easily measured by using the ccb_size program on the 

produced executable. This program measures the text, data, BSS, stack and memory sizes, but only the 

text, data and BSS segments are of interest to this test since stack and memory sizes can be adjusted by 

the chmem program.  

Executable performance 

Measuring executable performance has been done in a straight forward way. For each selected programs a 

test set was made which lets the program do some work which takes a relatively long time to complete. 

To measure the time these tasks take, the ccb_time program was used. The details of the test set for each 

program is explained in section 1. 

Program selection 

To be able to measure the performance of the compilers with the optimization options, a selection of 

programs was needed. These programs needed to compile without errors with both cc and gcc, and 

needed to be able to run without interactive input to make automated testing possible. 

The following programs were used in the measurements; 

• awk 

• bc 1.02 

• bzip2 1.03 

• gzip 1.2.4 

• python 1.5.2 

• sed 

• sorting algorithms (bubblesort, insertionsort, selectionsort and quicksort) 

• whetstone 

Awk accepts input instructions to usually transform input files or perform calculations on an input file. It 

can also be used to perform calculations without input. Bc is an arbitrary precision calculator program, 

which works interactively or uses input scripts. Bzip2 and gzip are lossless compression programs. Python 

is an interpreter program for the general-purpose, high-level programming language Python. Sed is a 

stream editor program which accepts regular expression commands to transform input streams. The 

sorting algorithms are implementations of different sorting algorithms in C (4), which are executed on 

randomly initialized arrays. Whetstone (5) (6) is a synthetic benchmark which was published in ALGOL 

in 1976. It was designed to provide a benchmark with which the performance of new hardware could be 

estimated for general programs. It runs for a specified amount of loops, and the time spent to perform 
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these loops is used as a measure of performance. The test consists of 11 weighted modules, each 

measuring a certain aspect of performance. 

To test some specific characteristics of compilation speed, two types of code were tested in the 

compilation speed part only. The effects of identifier length and function size have been tested using code 

files generated for different amounts of lines. To test the effect of identifier length, code files were 

generated only containing repeated assignments to zero of the same variable. The length of this variable 

name was set to a single character for the short identifier test, and to 624 for the long identifier test. To 

test the effect of function size, code files were generated by repeating the code for the insertion sort 

algorithm in one big function and in separate functions for the big function and small function cases 

respectively. 

Test machines 

The complete test set was run on two different computers, the specifications are listed below. 

Table 4 - Test machines specifications 

  Machine 1 Machine 2 

CPU  Intel Pentium II Intel Pentium III EB 

Clock frequency  350 MHz 1 GHz 

Memory  192 MB (3x64MB) 512 MB (2x256MB PC133) 

Motherboard  Intel SE440BX-2 Gigabyte 6VX7-4X 

Hard drive  Quantum Fireball CR4.3A (4.3 GB) Maxtor D740X-6L (40GB) 

Whetstone score 

(built with gcc 3.4.3, 

no optimization) 

 

 

 

4.0 MIPS 11.6 MIPS 

 

Machine 1 will be referred to as Pentium 2 350MHz, and machine 2 as Pentium 3 1GHz from now on. 

 

4. Compilation 

The results of the compilation speed test are presented and discussed in this section. First the separate 

tests of compiler behaviour are discussed, and then the compilation times of the tested programs are 

discussed. 

Compilation time factors 

To analyze how the compilation time is affected by several factors, several tests were conducted to 

measure these effects. To test the influence of the input file size, several code fragments were repeated to 

generate code files of varying sizes, which were then compiled as object files to exclude the linker from 

measurement. The code fragments used were three different types; integer assignment with a short 

identifier, integer assignment with a long identifier, and the insertion sort algorithm. These fragments are 

listed in the appendix, code listings 1, 2 and 3. The bold sections represent the part which is repeated, and 

the identifier in listing 1 is replaced with i for the short identifier, and 24 times the alphabet (624 

characters) for the long identifier version. In listing 3, the %% part of the function identifier is replaced by 

a number for each repeat. 



10  MINIX 3 C Compiler Performance 

Figures 5 and 6 in the appendix show the results of cc for the integer assignment test. Because cc -O3 is 

much slower than the other presets for a high number of lines, the results are shown separately in figure 6 

as well. Trend lines (generated by Microsoft Excel 2007) are shown in these figures, which are also used 

in other figures for this section. Figure 5 shows a linear relation for both -O1 and -O2 with the short 

identifier, and -O1 with the long identifier. -O2 with the long identifier shows a polynomial relation. 

Figure 6 shows a polynomial relation for -O3. Important to note here, is that this test compiles large 

functions instead of a lot of small functions. As will be seen further on, this influences the behaviour of 

the compiler in this aspect of performance. Comparing -O1 and -O2, it is clear that -O2 compiles slower 

than -O1, which is as expected. The compilation time of -O3 is extremely large compared to the other 

presets, especially for a large number of lines, but this is entirely caused by the polynomial relation this 

presets shows. 

Figure 7 shows the results of gcc 3.4.3 for the same test. Compared to cc, gcc does not have a preset 

which shows a different relation than the other presets, only the coefficient of the lines differs. At first 

sight, the trend lines look linear, but in fact they are polynomial. The presets -O2 -O3 and -Os show the 

same times, with the exception of a peak for -O2 and -O3 at 3000 lines in the short identifier case. Why 

this peak is only present for these presets is not clear, perhaps some sort of caching in gcc causes this 

peak for this specific number of lines. In this case, compilation time is highest for the preset -O0 which is 

quite unexpected since this is supposed to give the lowest compilation time. Other than these cases, the 

results are as expected, and again there is a difference between the short identifier and the long identifier 

with the short identifier compiling faster. 

The last figure concerning compilation user time for the integer assignment code is figure 8, which shows 

the results of gcc 4.1.1. Compared to version 3.4.3, the presets show the same ordering in compilation 

time, only the -O1 -O2 -O3 and -Os show a stronger polynomial relation. For a lower number of lines 

these presets use slightly less compilation time in version 4.1.1 than in version 3.4.3, but for a high 

number of lines the opposite is true. The preset -O0 uses less compilation time in version 4.1.1 than in 

version 3.4.3. 

Figures 9, 10, and 11 in the appendix contain the results of the insertion sort compilation test for cc, gcc 
3.4.3 and gcc 4.1.1 respectively. The figures combine the results of the separate functions and combined 

function code. For the combined function code, cc shows a polynomial relation for each preset. The 

separate functions code however, shows a linear relation for each preset. These results show that for cc, 

the time complexity of function compilation has an order of n² where n is the function size. The linear 

behaviour for the separate functions code proves that this order of n² is caused by the function size, and 

not the total input size. In the case of the integer assignment, this time complexity is only clearly shown 

for -O3. This is probably caused by the trivial code, in contrast to the insertion sort algorithm. 

The time complexity of gcc has an order of n² for both the separate functions code and the combined 

function code, for every preset. The difference between the two types of code is only that the combined 

function code compiles faster than the separate function code. Compilation time goes from lowest to 

highest for both versions of gcc in the following order of presets; -O0, -O1, -Os, -O2, -O3. Comparing 

version 3.4.3 to 4.1.1 shows that the -O0 preset compiles in roughly the same time in version 4.1.1, but 

the other presets need more time than in version 3.4.3. 

So far in this section, only the user time of the compiler has been studied. This only takes into account 

the amount of processing time the compiler, which is not the only factor which determines how much 

time a compiler needs to compile a complete program. Another factor is how long loading and 

initialization of the compiler takes before it starts to compile. To analyze this, the real times for the 

compilation tests above can be analyzed. These results are shown in figures 12-17 in the appendix. Using 

extrapolation, the value for 0 lines of code can be approximated for each compiler. For cc, the different 

presets show different values when extrapolating the lines, with a rough estimation of 7 ticks (~117 
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msec.) for -O1, 12 ticks (~200 msec.) for -O2, and 20 ticks (~333 msec.) for -O3. This difference can be 

explained by the way the cc compiler is constructed. For optimization, it uses sub processes like em_opt 

and em_opt2. Since these programs need to be loaded separately, depending on what optimization preset 

is used, the startup times vary for each preset. For gcc, every preset has the same startup time, roughly 40 

ticks (~667 msec.) for version 3.4.3, and roughly 115 ticks (~1.92 sec.) for version 4.1.1. These startup 

times are higher than those of cc, especially for gcc 4.1.1 the startup time is much higher. High startup 

times become a large factor in total compilation times for build processes which make many calls to the 

compiler for small input files. In these types of build processes, the startup time is a very large part of 

each compiler call because the user time is low for small input files.  

Program compilation time 

The absolute compilation times of the selected programs for both test systems are shown in figures 1 and 

2 of the appendix. Programs are sorted by number of compiler executions from left to right, high to low. 

The times are divided in three sections, real, user and system. The top rows indicate the program, the 

number of times the compiler was started during the build, and the total size of the source files, code and 

headers in kilobytes. The cases where compilation failed are empty cells. Python, gzip and awk all failed in 

the case of cc -O3, where the compiler returns the following type of error message; 

/usr/lib/em_opt2: error on line 766: This is not allowed outside a 

procedure 

The em_opt2 program handles optimization of the intermediate EM code (7), so the error statement has 

to do with the code produced by the C front-end and the optimizations already performed on that code. 

Investigating and fixing the problem was outside the scope of this test, so the results for cc -O3 are 

incomplete. Awk failed to compile under gcc 4.1.1 because the behavior of this version is different from 

gcc 3.4.3. Version 4.1.1 fails with an error message (static declaration of [identifier] follows non-static 

declaration) where gcc 3.4.3 does not. Because the code needed more than some simple fixes to fix this 

error, and the code does compile in version 3.4.3, the code was left as it was. 

From the absolute compilation times, the user/real ratios can be calculated. This ratio indicates how CPU 

bound or I/O bound a process is, where a high ratio is CPU bound, and low I/O bound. The results 

from the Pentium 2 system are shown in table 5, sorted by the ratio of the total source size and number 

of compiler executions.  

This table shows that the compiler is less CPU bound when the ratio of size versus executions is low, 

because in this situation, the time spent loading the compiler (which does not count for user time) is a 

larger factor for the total time. 

The lowest ratios are found for gcc -O0. This is explained by the lack of optimization and the longer 

startup time for the gcc compiler. Comparing the gcc versions shows that version 4.1.1 is even less CPU 

bound than 3.4.3, which can be explained by the higher startup time for version 4.1.1. 

The gcc compiler becomes more CPU bound for higher optimization parameters, which can be expected 

since the compiler needs to do more processing for the same file. Cc however behaves in an opposite 

way, becoming less CPU bound at higher settings, with the exception of bzip2 with -O3 parameter. The 

user time does increase, so more processing is being performed as expected, however the compiler seems 

to do more I/O as well. 

In order to compare compilation times independently from program size, figures 3 and 4 of the appendix 

show the times indexed to the default case of cc -O1. The formula used for this index is the time divided 

by the time of cc -O1, times 100. A value of 100 is thus equal to the time of cc -O1, 50 is half, 200 

double, and so on. With these values, an average score is calculated for each case. This average excludes 
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the values for awk, since this failed to compile in gcc 4.1.1. Cc -O3 does not have an average because two 

values are missing, so the result would not be comparable to the rest.  

Table 5 - Compilation user/real ratio (Pentium 2) 

    sed bzip2 python gzip bc awk 
whet-

stone 
sorting 

AVERAGE 

excl. awk 

Total size / compiler executions (kB) 45.04 21.70 19.51 16.69 16.18 10.43 7.93 1.97 n/a 

Compiler Optimization parameters                   

cc -O1 76.87% 80.72% 67.64% 58.25% 60.99% 58.50% 54.14% 34.82% 61.92% 

  -O2 69.39% 73.19% 59.07% 48.35% 53.81% 50.22% 48.25% 24.29% 53.76% 

  -O3 67.61% 76.51%     46.23%   39.56% 19.22% 

 gcc 3.4.3 -O0 33.37% 54.32% 44.58% 31.06% 36.80% 36.56% 17.83% 7.45% 32.20% 

  -O1 49.21% 69.02% 56.61% 42.37% 47.44% 48.64% 26.10% 9.05% 42.83% 

  -O2 66.03% 82.10% 69.77% 55.52% 60.23% 62.17% 37.31% 11.38% 54.62% 

  -O2 -march=pentium2 66.69% 82.08% 69.81% 56.30% 60.47% 62.99% 39.00% 11.28% 55.09% 

  -O2 -mtune=pentium2 66.69% 82.13% 69.83% 56.06% 60.48% 62.66% 38.49% 11.23% 54.99% 

  -O3 72.64% 85.02% 76.82% 60.27% 71.42% 75.92% 41.35% 12.72% 60.03% 

  -O3 -march=pentium2 73.17% 85.19% 76.72% 61.20% 71.08% 76.09% 43.14% 13.46% 60.57% 

  -O3 -mtune=pentium2 72.85% 85.17% 76.87% 61.07% 71.52% 76.03% 42.87% 13.11% 60.50% 

  -Os 64.84% 80.31% 67.83% 52.83% 57.39% 59.50% 34.24% 11.13% 52.65% 

  -Os -march=pentium2 65.65% 80.73% 68.27% 53.56% 57.73% 60.86% 35.12% 10.86% 53.13% 

  -Os -mtune=pentium2 66.35% 80.56% 68.38% 53.58% 57.78% 61.00% 35.64% 11.17% 53.35% 

gcc 4.1.1 -O0 29.47% 31.28% 20.71% 14.24% 17.42%   16.43% 5.72% 19.32% 

  -O1 56.90% 58.62% 38.49% 29.80% 31.21%   24.08% 8.54% 35.38% 

  -O2 65.95% 67.75% 46.37% 36.68% 38.76%   28.94% 10.75% 42.17% 

  -O2 -march=pentium2 67.38% 69.02% 47.33% 37.66% 39.50%   33.03% 11.12% 43.58% 

  -O2 -mtune=pentium2 66.80% 68.43% 47.17% 37.82% 39.26%   33.03% 10.96% 43.35% 

  -O3 67.93% 71.76% 53.08% 41.93% 51.16%   38.61% 12.87% 48.19% 

  -O3 -march=pentium2 69.28% 72.70% 53.81% 43.09% 51.94%   48.72% 13.14% 50.38% 

  -O3 -mtune=pentium2 69.67% 72.24% 53.84% 43.03% 51.65%   49.04% 13.04% 50.36% 

  -Os 64.03% 58.21% 43.57% 34.26% 35.88%   25.40% 9.75% 38.73% 

  -Os -march=pentium2 64.92% 59.84% 44.91% 35.37% 37.00%   29.05% 10.28% 40.20% 

  -Os -mtune=pentium2 65.28% 59.11% 44.86% 35.39% 37.07%   27.92% 10.10% 39.96% 

 

Used color scale 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

 

The table shows that gcc is slower than cc for every combination of program and optimization 

parameters, only scoring better than cc -O3 for bzip2 with gcc 3.4.3 -O0. For stronger optimization 

parameters, gcc is severely slower than cc, with increases of a factor 10 and more for several programs. Cc 

shows an increase in real compilation time of about 50% for -O2 on the Pentium 2 system, and about 

60% on the Pentium 3. In the cases where compilation with -O3 succeeded, increases of over 100% are 

seen on both systems, with the Pentium 3 showing slightly larger increases. Gcc shows more variation for 

the different programs, not only relative to cc, but also relative to its own optimization parameters. For 

example, on the Pentium2, compiling gzip takes 74.1% longer with -O3 than with -O0, but for bzip2 this 

increase is 206.5%. The sorting program shows almost no difference for each of the optimization settings, 

but this can be explained by the relatively long startup time of gcc, combined with the very small input 

size per execution (see table 5). Looking at the average values, gcc is a lot slower than cc, even when no 

optimization is applied. This can only partly be attributed to the longer startup time, since the user times 

show a big increase as well. 

With the average values, an ordering can be made to show how the different compilers and optimization 

parameters perform on average. The results sorted by real values are shown in figure 1 and figure 2 

below. 

Comparing the results for the two systems, the ordering hardly differs. Only the positions 11 through 14 

are reordered, and positions 23 and 24 are switched. The averages show that the cc compiler is fastest, 

followed by version 3.4.3 of gcc, and gcc 4.1.1 is slowest. Interesting is that gcc 4.1.1 is even slower 

without optimization options than all the other compiler / optimization parameter combinations. Both 

versions of gcc clearly show that compilation time increases for stronger optimization parameters -O1 
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-O2 -O3. The size optimization parameter (

architecture specific parameters increase compilation time slightly in every case.

In the system values, cc shows an increase for 

optimization parameter. The figures show th

than version 4.1.1. Looking back at tables

on the left of awk. These programs have a much larger total source size than the programs to 

awk which can be seen in the row “Total source size”. Another difference between these sets of programs 

is that the larger programs consist of multiple .c and .h files. Somehow version 3.4.3 uses more system 

time to process these files. 

 

Figure 1 - Pentium 2 Average compilation times
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O3. The size optimization parameter (-Os) takes just a little shorter to compile than 

architecture specific parameters increase compilation time slightly in every case. 

In the system values, cc shows an increase for -O2, yet for gcc the values are the same for every tested 
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Figure 2 - Pentium 3 Average compilation times
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5. Executable segment sizes 

The second part of compiler performance measured is the segment sizes of the produced executables. As 

explained in section 1 - Segment size measurement, only the Text, Data and BSS segment are of interest. 

Because the Text segment contains the instructions, it is most interesting when looking from an 

optimization perspective, both for performance and for size. The Data segment and BSS segments 

contain the initialized and un-initialized global variables respectively.  

Results 

The results are presented as absolute values in figure 18 of the appendix, and indexed to the default case 

of cc -O1 in figure 19. Because the produced executables are identical for both systems, with the 

exception of those produced with architecture specific optimization parameters, the results are presented 

in single tables instead of separate tables per test system. The results of gcc with -mtune=pentium3 are 

not displayed because the sizes were equal to the executables compiled with -mtune=pentium2. 

Although the set of programs is not elaborate enough to draw hard conclusions about the optimization 

strategies used when looking at the segment size, it does give an indication of what can usually be 

expected. 

In the table showing the sizes in bytes, the sizes of each segment can be compared to see the share each 

segment has in the total size of the executable. For example, the BSS segment of the sorting programs is 

very large compared to the other segments. This is caused by the use of large uninitialized arrays which 

are filled and then sorted at run time. Gzip also has a relatively large BSS segment, because it was 

compiled using buffers which are declared at compile time. Python has Text and Data segments which are 

much larger than the other programs. This is not very surprising since Python is an interpreter for a high 

level language, and thus has to implement a lot more functionality than the other programs. Apart from 

these observations, this table also indicates how relevant each value in the indexed table is. For example, 

looking at the Data segment for the sorting program, gcc has an indexed value of 228.57 but the absolute 

value is 256 against 112, which is small compared to the size of the Text segment. 

The values for the Text segment of the programs compiled with cc -O2 in the indexed table show that 

the optimization used by cc decreases the size of the segment in every case. The behaviour for cc with -

O3 is less clear because three results are missing due to failed compilation, but the value for the sorting 

programs indicate that the optimization strategies used here do not only remove instructions. Gcc shows 

a similar behavior when comparing its performance optimization parameter results. All programs show a 

decrease in Text segment size for optimization parameters -O1 and -O2 when compared to -O0, except 

for the whetstone program when architecture specific optimization is added (gcc version 3.4.3). Size 

optimization in gcc always produces a smaller Text segment than gcc’s other optimization parameters, for 

Python this difference is 33%1 for version 3.4.3 and 35%2 for version 4.1.1. In bytes these decreases are 

168 kB and 185 kB respectively. 

The Data segment is always the same size in cc, and shows small variation among the performance 

optimization parameters of gcc. Size optimization in gcc does not increase the segment size, and can 

decrease segment size up to 16%3. 

  

                                                      
1 Comparing -O3 to -Os 
2 Comparing -O0 to -Os 
3 Comparing gcc 3.4.3 -O3 and -Os for awk 
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The BSS segment is the same size for every optimization parameter, so the tested optimization 

parameters do not use any strategies which have effect on the BSS segment size. 

Comparing cc to gcc, it is not possible to pick a clear winner with respect to segment sizes. Looking at the 

results for the Text segment, the compiler which generates the smallest segment depends on the program 

being compiled. For example, bzip2 has a smaller Text segment with gcc when optimization is used, 

especially when optimizing for size. On the other hand, gzip is 7% to 42% larger than cc -O1 when 

compiled by gcc. The results for the Data segment show a similar behaviour, where gcc produces a 

smaller segment for some programs, and a larger segment for others. One point where a clear distinction 

can be made is the BSS segment; cc produces a smaller segment for each tested program. 

To make an ordering in compiler / optimization parameter combinations, the average sizes of the Text 

segment have been sorted and displayed in figure 3 below. The averages were calculated without awk, and 

cc -O3 has been omitted from the results because too many programs failed to compile. 

 

Figure 3 - Average text segment sizes 
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bottom end of the chart, where the largest segment results are shown, -O3 produces a smaller segment 

than the -O0 of the same compiler version. Version 3.4.3 generates the smaller segment here, in contrast 

to the size optimization where version 4.1.1 generates the smaller segment. The difference is bigger here, 

with 4.1.1 being 1.8% larger for -O0 and 2.8% larger for -O3. The combination of -O3 and architecture 

specific optimization produces the largest segment. In these cases, the segments produced by version 

3.4.3 are again smaller than version 4.1.1. 

 

6. Execution 

In this section, the results of the execution performance measurements are presented and discussed. This 

part of compiler performance is probably most interesting for most readers, since compilation time is 

only an issue during development in the vast majority of cases, and segment sizes are not very important 

on the majority of x86 based hardware today. Execution performance has been measured by timing each 

program as it executes a set of tests, to create a benchmark. Because some benchmarks perform I/O and 

others use almost none at all, the benchmarks have been split into two sets. Set 1 is the set of CPU bound 

benchmarks, so only user time is presented for this set. Real and system times are left out because the 

former is almost equal to the user time, and the latter is too small to measure in these benchmarks.  Set 2 

is the set of benchmarks which are less CPU bound, and therefore have a measurable amount of system 

time, so all times are included in their results. 

This section is laid out as follows; first the used benchmarks are listed and explained, then the results for 

set 1 are presented and discussed, then the same follows for set 2. Gcc’s architecture specific optimization 

is discussed last, so this subject will not be discussed in detail in the sections before it. 

Used benchmarks 

The benchmarks used in the measurements, and in which set they are included, are listed and explained in 

table 6. Where relevant, the used code is included in the appendix. 

In most cases, the program was executed repeatedly using ccb_time (see Used programs in the section 

Measurement set-up). Some exceptions were made to this method, where the benchmark executed 

sufficiently long enough for a reliable measurement. The benchmarks that were not repeated are the 

sorting programs (except quicksort), whetstone, and pybench. Pybench has also been timed differently 

than the other benchmarks, because the program has its own way of calculating the performance of 

python. Instead, the minimum time total which pybench prints in the output has been parsed and used as 

real time in the data. 
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Table 6 - List of used benchmarks 

Program Benchmark Set Description 

awk duplicates 1 Detects duplicate words in the input (like “is is”). 

line_numbers 2 Prints the line number followed by a tab before each line of input. 

pi 1 Calculates π using the Bailey-Borwein-Plouffe formula with 500000 

terms. 

word_count 2 Calculates the word count for each word found in the input and prints 

the results. 

bc e 1 Calculates � with 2000 decimals by calculating 8000 terms of the  

following series; 

� � � 1
�!

�

�	

 

pi 1 Calculates π using 1000 terms of the Bailey-Borwein-Plouffe formula. 

Uses 1000 decimals in the calculation. 

bzip2 compression 2 Compresses a large xml file (~ 6 MB), a large text file (~ 1.8 MB), a 

MPEG 4 encoded avi file (~ 3.3 MB) and a jpeg file (~ 300 kB) at 

maximum compression (option -9). 

decompression 2 Decompresses the compressed files. 

gzip2 compression 2 Compresses the same set of files as bzip2 again at maximum 

compression (option -9). 

decompression 2 Decompresses the compressed files. 

python pybench 1 Pybench is a benchmark suite currently included in the source tree of 

Python. The tested version 1.5.2 of Python did not contain this 

however, so the latest version (revision 61317) at the time of 

measurement was taken from the subversion repository at 

http://svn.python.org/projects/python/trunk/Tools/pybench. The file 

pybench.py was modified because it requires a module “platform” 

which was not present. Only code printing the platform information 

was removed. 

The program was run with the parameters -n 1 -w 20, which indicate 

one loop at warp 20. This was done to let the benchmark run for a 

shorter time than default. 

pystone 1 This is a translation to python of the dhrystone benchmark program 

(8). Pystone is included in the directory Lib/test of python 1.5.2. 

sed reverse 1 Reverses the character order per line. 

selective_print 2 Selectively prints lines containing the word “the”. 

substitute 2 Substitutes parts of input that match a certain format. 

sorting bubble 1 Sorts a randomly initialized integer array with 65536 items using 

bubblesort. 

insertion 1 Same but with insertionsort. 

selection 1 Same but with selectionsort. 

quick 1 Same, but with a larger array of 655360 items and quicksort. The larger 

array was necessary because quicksort is too fast for the smaller array. 

whetstone whetstone 1 Executes the whetstone program with 5000 loops (instead of the 

default 1000). 
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Benchmark set 1 results 

Following the same approach as in section 4 dealing with compilation speed, the results are presented in 

three forms. First the absolute measurements are presented with time in clock ticks (appendix, figure 20), 

then the results indexed to cc -O1 (appendix, figure 21), and finally the averages of these indexed values 

are sorted and presented in a chart (figure 4 and figure 5). In addition to these results, the performance 

differences between the presets are also analyzed. 

In the absolute results, the length of the benchmarks can be compared, which shows that of the sorting 

algorithms, bubblesort is the slowest followed by selectionsort, insertionsort, and quicksort. Quicksort is 

extremely fast in comparison, even though the benchmark for quicksort sorts a set which is 10 times 

larger than the other algorithm’s benchmarks. Some large differences already can be seen between the 

different compilers and optimization parameters in these numbers, but the indexed table will show this 

more clearly. 

From the indexed table, it is clear to see just looking at the colours (green and red indicate faster/slower 

than cc -O1 respectively) that gcc is faster in the vast majority of these benchmarks. The lowest value can 

be found for the e benchmark of bc compiled with gcc 3.4.3 with -O2, which is 26.1 on the Pentium 2 

system and 25.8 on the Pentium 3. Even though these cases are the lowest points, these values show that 

when performance is important, it is worth investigating the performance of a program when compiled 

with different compilers and optimization parameters. 

In general, one would expect that the execution performance of programs compiled with the more 

aggressive optimization presets to be higher than the less aggressive presets. To analyze this, the 

differences between each successive preset have been calculated for each benchmark. This calculation 

uses the following form; 
OOOO����nnnn����1111� � � � ----    OnOnOnOn

OnOnOnOn  . If the theory applies, for each successive preset this number will 

be below 0 to indicate a lower execution time. Tables 7, 8, and 9 show the results for the compilers cc, 

gcc 3.4.3, and gcc 4.1.1 respectively. Architecture specific optimization is ignored for these results, and 

empty cells indicate a failure of compilation. Awk is not shown in table 9, because it failed to compile in 

this compiler, gcc 4.1.1. 

Looking at the results of cc, -O2 performs better than -O1 in most benchmarks, with a lowest value of -

4.5% for the pi benchmark of bc. For -O3 the failure of compilation of awk and python limits the amount 

of data available, but the data that is available does show that -O3 is not necessarily faster than -O2. In 

some cases like quicksort or bubblesort the performance is substantially worse with 18% and 24% longer 

execution times for the benchmarks respectively. The pi benchmark of bc shows that -O3 can result in a 

big performance increase with 40% reduction in execution time. 

For gcc, in most cases the values in the table are negative or only slightly positive, so the theory applies 

pretty well to this data. There are some exceptions however, with the e benchmark of bc showing a large 

degradation in execution performance for both version 3.4.3 and 4.1.1 of the compiler. In version 4.1.1, 

the reverse benchmark of sed also shows a significant decrease in execution performance. In both versions, 

the performance difference is largest between -O1 and -O0.  

Overall it can be said that the performance optimization for gcc behaves as expected, with -O3 being 

faster overall than -O2, which is faster overall than -O1, and -O0 is slowest. For cc, the theory does not 

really apply very well, the preset -O3 shows mixed results, with some benchmarks performing faster while 

other benchmarks perform slower. 
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Table 7 - CC optimization ordering (values from Pentium 2) 

CC 
  

OOOO2 2 2 2 ----    OOOO1111
OOOO1111  

OOOO3 3 3 3 ----    OOOO2222
OOOO2222  

Program Benchmark     

awk duplicates 0.00%   

awk pi -2.31%   

bc e -2.63% -7.24% 

bc pi -4.50% -40.31% 

python pybench 0.07%   

python pystone -1.77%   

sed reverse 1.43% 0.06% 

sorting bubble -1.04% 24.05% 

sorting insertion 4.80% -9.81% 

sorting quick -0.12% 17.69% 

sorting selection -2.13% 0.46% 

whetstone whetstone -2.70% 2.77% 

 

Used color scale -50% -25% 0% 25% 50% 
 

 

Table 8 - Gcc 3.4.3 optimization ordering (values from Pentium 2) 

GCC 3.4.3 
 

OOOO1 1 1 1 ----    OOOO0000
OOOO0000  

OOOO2 2 2 2 ----    OOOO1111
OOOO1111  

OOOO3 3 3 3 ----    OOOO2222
OOOO2222  

Program Benchmark 
   

awk duplicates -8.62% -2.80% -9.41% 

awk pi -6.05% -2.10% -0.95% 

bc e -57.05% -9.30% 58.44% 

bc pi -57.99% -9.06% 1.27% 

python pybench -3.89% -1.50% 0.15% 

python pystone -22.67% -8.82% -4.88% 

sed reverse -45.75% -3.16% -3.63% 

sorting bubble -43.14% 0.70% -11.59% 

sorting insertion -42.76% -0.03% -16.21% 

sorting quick -23.13% 1.72% 0.00% 

sorting selection -31.32% -2.04% -6.34% 

whetstone whetstone -0.39% 1.78% -27.76% 

 

Used color scale -50% -25% 0% 25% 50% 
 

 

Table 9 - Gcc 4.1.1 optimization ordering (values from Pentium 2) 

GCC 4.1.1 
 

OOOO1 1 1 1 ----    OOOO0000
OOOO0000  

OOOO2 2 2 2 ----    OOOO1111
OOOO1111  

OOOO3 3 3 3 ----    OOOO2222
OOOO2222  

Program Benchmark       

bc e -56.28% -7.49% 40.70% 

bc pi -51.29% -8.65% -8.57% 

python pybench 0.08% -1.35% -0.48% 

python pystone -33.45% -8.58% 0.97% 

sed reverse -46.14% -10.55% 7.40% 

sorting bubble -41.95% -4.11% -3.17% 

sorting insertion -51.53% 2.24% -3.99% 

sorting quick -21.09% -1.76% -1.80% 

sorting selection -26.38% -2.93% -6.96% 

whetstone whetstone 0.10% -2.10% -26.86% 

 

Used color scale -50% -25% 0% 25% 50% 
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As in the previous sections, to compare the different compiler / optimization parameter combinations to 

each other, an average was calculated for each combination except cc -O3. Again, this average excludes 

awk because it failed to compile in gcc 4.1.1. The best average execution performance is achieved with 

gcc 4.1.1 -O3 using -march architecture specific optimization with a value of 62 on the Pentium 2 and 

using -mtune on the Pentium 3 (because -march is missing the whetstone value due to failure in 

execution).  Comparing both compilers shows that cc is only faster than gcc when no optimization is used 

for the latter. Disregarding architecture optimization for the moment, the optimization presets of gcc 

show a ordering of -O3 -O2 -O1 -Os -O0 from fast to slow for both versions of gcc. For each of these 

presets, version 3.4.3 is slightly faster than 4.1.1. On averages, architecture specific optimization is better 

for version 4.1.1, this is discussed in greater detail in the section Architecture optimization performance. 

Concluding this benchmark set, when a program is very CPU bound, gcc can increase performance 

significantly compared to cc. Double the performance is no exception, especially when using the more 

aggressive optimization presets. Without architecture specific optimization, version 3.4.3 of gcc generally 

generates faster code than version 4.1.1, but when this optimization is used, version 4.1.1 generates faster 

code. 
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Figure 4 - Average execution times for set 1 (Pentium 2) 
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Figure 5 - Average execution times for set 1 (Pentium 3) 



Execution  23 

Benchmark set 2 results 

The second set of results contains the benchmarks which use a measurable amount of system time. Their 

results are discussed much the same way as the first set, only gcc’s optimization ordering is not discussed 

as elaborately as before. 

Figures 22 and 23 of the appendix show the absolute results for this set of benchmarks on the Pentium 2 

and Pentium 3 system respectively. The benchmarks are sorted from high to low by the User/Real ratio 

for cc -O1. The compression programs bzip2 and gzip both show asymmetric performance; compression 

is slower than decompression. Comparing the two programs to each other, it is clear that bzip2 is much 

slower than gzip (both programs compress and decompress the same set of files). Also bzip2 uses more 

system time, which could be caused by a different buffering strategy, but can also be caused by the 

different algorithms requiring a different access pattern. Again the absolute results show that gcc 

performs better than cc in a lot of cases, which is illustrated further in the indexed tables. 

The indexed results are shown in figures 24 and 25 of the appendix. Comparing the results for the user 

times to the first set, the colours visually suggest that the differences between cc and gcc are not as large. 

Comparing the average user values confirms this. Bzip2 shows the biggest performance increase for gcc 

compared to cc, with roughly double the performance on the Pentium 2 when optimization is used, and a 

slightly smaller performance increase on the Pentium 3. The other benchmarks do not come close to this 

difference. 

Moving on to the system values, the picture is very different. In this area, gcc is mostly slower than cc, 

with the exception of the bzip2 compression benchmark, the awk word_count benchmark, and some 

other benchmarks for certain optimization settings on the Pentium 2. On the Pentium 3, the two 

mentioned benchmarks also show mostly increased system time. The gzip benchmarks show a big 

increase in system time for gcc compared to cc. The Pentium 3 shows even greater differences than the 

Pentium 2; on the former, decompression is more than 4 times as slow with gcc compared to cc -O1, 

where on the latter the same benchmark is between 2 and 3 times as slow. 

The indexed values for the real times show some differences with the user values. For example, the real 

values of gcc for the decompression benchmark of gzip are noticeably higher than the user values, 

especially on the Pentium 3. This is caused by the higher system times for gcc, which slow down the 

benchmark. The benchmarks with a high user/real ratio have real values which are almost the same as the 

user times because of the low impact of the system times on the total time. 

Like the results of set 1, the results of set 2 have been graphically represented in figure 7 and figure 6 by 

taking the averages of the indexed values, and sorting these values low to high. In this case, both the user 

and real values are shown, and sorted by user. Compared to set 1, it is obvious that gcc’s architecture 

optimization is more effective for this set of benchmarks, since all the top ten positions are taken by gcc 

with architecture specific optimization options. Version 3.4.3 of gcc shows an ordering in performance of 

-O3, -O2, -Os, -O1, and -O0 from high to low, for version 4.1.1 the same ordering applies, except -Os 

comes after -O1. Gcc version 3.4.3 is a bit faster than gcc version 4.1.1 in this benchmark set. This also 

holds when architecture optimization is used, in contrast to set 1 where version 4.1.1 was much faster 

than version 3.4.3. As mentioned before, gcc does not perform as good compared to cc as in set 1, 

nonetheless, in this set gcc generates faster code than cc when any optimization is used. 

In conclusion for this set of benchmarks, for programs which are very IO bound, gcc can significantly 

decrease performance compared to cc. When the program does some IO but is more CPU bound, 

performance can benefit from the faster code gcc generates. 
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7. Conclusion 

When it comes to compilation speed, comparing ACK’s cc to gcc shows that cc compiles a great deal 

faster for all programs. This difference is caused by two factors; cc’s faster compilation when looking at 

the compiler’s user times, and the faster loading and initialization of cc. During development therefore, cc 

has an advantage in reducing compilation time. In this paper other compiler features like code safety 

checking and debugging facilities have not been taken into consideration however, so these features 

should be taken into consideration as well when choosing a compiler for the development phase. 

Comparing the gcc versions to each other, version 4.1.1 compiles considerably slower than version 3.4.3, 

which can be attributed to the loading and initialization phase which takes almost 2 seconds for version 

4.1.1 against 0.67 seconds for version 3.4.3. 

Segment sizes are generally larger for gcc than for cc, especially when aggressive performance 

optimization is used. Gcc’s size optimization preset -Os always generates smaller segment sizes compared 

to the other presets, but does not always generate smaller segment sizes than cc. In general, when 

segment sizes are an issue, using cc gives the best results, however for some programs gcc gives better 

results, so it is useful to compare the two for the program being compiled. 

Comparing cc to gcc in the area of execution performance, gcc clearly performs better than cc. For some 

programs, gcc even outperforms cc when no optimization is used for gcc (-O0). On average, execution 

times can be reduced to 77% and 85% using gcc -O3 on the Pentium 2 and Pentium 3 respectively. Some 

programs like bc however are reduced to 26%, so the potential performance gain is quite large, depending 

on program and its usage. Architecture specific optimization does not necessarily improve performance, it 

can also degrade performance, and version 4.1.1 of gcc performs better in this area than version 3.4.3.  

The results shown in this paper show that it could be useful to try to make use of the gcc compiler 

toolchain to build at least some of the programs released for MINIX 3. Also, it is worth investigating if 

the kernel can be built using gcc, and if so, what the differences are in kernel size and system 

performance. Also, the comparison between cc and gcc could be broadened to look at compiler features 

which were ignored for this paper, like debugging and code checking.    
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