

MINIX 3

C Compiler

Performance

Comparing the

Amsterdam Compiler

Kit to the GNU

Compiler Collection

on x86 systems

Feisal S. Ahmad fsahmad@few.vu.nl

9-6-2008

Table of Contents

1. Abstract 5

2. Introduction 5

3. Measurement set-up 5

Operating system 5

Compilers 5

Optimization options 6

Measurement methodology 7

Program selection 8

Test machines 9

4. Compilation 9

Compilation time factors 9

Program compilation time 11

5. Executable segment sizes 15

Results 15

6. Execution 17

Used benchmarks 17

Benchmark set 1 results 19

Benchmark set 2 results 23

Architecture optimization performance 25

7. Conclusion 26

8. References 27

Abstract 5

1. Abstract

For years the default compilation toolchain of MINIX was the Amsterdam Compiler Kit. New to MINIX

3 is the port of the GNU Compiler Collection which brings an alternative toolchain, which is actively

developed and enjoys a large user base. In this paper a comparison of C compiler performance is

presented, focusing on three aspects of performance; compilation speed, executable segment sizes, and

execution speed. It is shown that compilation speed is several orders of magnitude slower for with gcc

compared to ACK’s cc. Segment sizes vary with gcc generating larger segments on average, but with

some programs which have smaller segment sizes in gcc. Execution speed is shown to be significantly

faster with gcc in almost all cases, especially for CPU bound processes.

2. Introduction

With the release of MINIX 3, a number of applications that previously were unavailable to MINIX have

been ported from other operating systems, like Linux. One of these ported applications was the GNU

Compiler Collection. In the past, the main compiler which was available for MINIX was the Amsterdam

Compiler Kit, originally written by Andrew S. Tanenbaum and Ceriel J.H. Jacobs. Because this compiler

originated in the 1980s, and the continuous development and wide use of GCC, it is interesting to

compare these compilers on MINIX. For this paper, the aspects that have been investigated and

compared are the C compiler’s performance in three areas; compilation speed, executable segment sizes,

and execution speed. Other aspects like code checking features and debugging functionality have not

been taken into consideration, to limit the scope of the paper.

The outline of this paper is as follows; the first section explains the measurement set-u, the three

following sections deal with the measured aspects of performance, and finally the conclusions are

presented.

3. Measurement set-up

This section describes what tools were used to measure the compilers performance in each field, and why

these were selected. Also how the measurements were taken is described.

Operating system

All measurements were done on MINIX version 3.1.2a, with all binaries from the CD installed. The

measurements were all run as user root, this is necessary because the scripts need to run the chmem

command on various compiler components.

Compilers

For these measurements, the c compiler of ACK, cc, was compared to the c compiler of the GNU

Compiler Collection, gcc. Two versions of gcc were used, version 3.4.3 and version 4.1.1. Because

compilation fails for some of the selected programs when using high optimization settings, various

6 MINIX 3 C Compiler Performance

components of the compiler needed more allocated memory. The following memory sizes were set with

chmem to prevent compiling from failing;

Table 1 - Compiler component sizes

Compiler File Stack + malloc size

cc /usr/lib/ego/bo 2 MB

 /usr/lib/ego/ra 5 MB

 /usr/lib/ego/cs 2 MB

 /usr/lib/ego/cf 2 MB

 /usr/lib/ego/sp 2 MB

 /usr/lib/ego/sr 2 MB

 /usr/lib/ego/ud 5 MB

 /usr/lib/ego/lv 5 MB

 /usr/lib/em_opt 512 kB

 /usr/lib/em_opt2 512 kB

 /usr/lib/em_cemcom.ansi 10 MB

gcc /usr/gnu/i386-pc-minix/bin/ld 6 MB

 /usr/gnu/libexec/gcc/i386-pc-minix/3.4.3/collect2 6 MB

Optimization options

To make a selection in optimization options (or flags), research in the possibilities was necessary. For cc,

the man-page tells us that optimization options are as follows;

Table 2 - ACK cc optimization options

-O Optimize code. This option is a no-op, because all

the compilers already use the -O1 optimization level

to get code of reasonable quality. Use -O0 to turn

off optimization to speed up compilation at debug

time.

-Olevel Compile with the given optimization level. (MINIX 3)

-OS

-OT

Optimize for space or for time. (MINIX 3)

During testing I noticed that -O0 and -O1 do not seem to differ in practice. Both options output identical

executables, and compilation time is the same for both settings. For higher settings, -O3 seems to be the

highest setting, since higher settings produce the same executable for the tested programs. The next

higher setting -O4 does seem to use different options for optimization, since compilation failed with an

out of memory error, where -O3 compiled without error. The options -OS and -OT are not supported, cc

prints an error message.

In contrast to cc, gcc provides a lot of specific optimization options (1) (2), providing fine grained control

of the optimization used. Manually selecting these options requires a great deal of knowledge about

compiler optimization strategies and their effectiveness on different types of code. Gcc also provides

presets in the same form as cc with -O flags, namely -O0, -O1 (or -O), -O2, -O3 and -Os. These presets

cannot be combined, only the last specified preset will be used, so it is not possible to combine for

example -O2 and -Os. For a complete description of the options used in each preset, and what the

options do, see (1) and (2).

In addition to these CPU independent optimization options, gcc also provides options to optimize the

code for a specific CPU architecture (3). These options attempt to produce code that tries to tune the

code (-mtune, -march) or allow the compiler to make use of special instructions available on the specific

CPU architecture (-march). Using these settings can have consequences for the produced executable. The

Measurement set-up 7

-mtune setting produces code that does not use any CPU architecture specific instructions, so the

produced executable can still run on other architectures. The -march setting makes CPU architecture

specific instructions available to the compiler, and therefore can produce executables that fail to run on

other architectures.

The following optimization options were used in the measurements;

Table 3 - Selected optimization options

Compiler Optimization parameters

cc -O1 (default)

 -O2

 -O3

gcc -O0 (default)

 -O1

 -O2

 -O2 -march=architecture

 -O2 -mtune=architecture

 -O3

 -O3 -march=architecture

 -O3 -mtune=architecture

 -Os

 -Os -mtune=architecture

 -Os -march=architecture

For cc, -O0 was omitted because it does not behave differently from -O1 which is the default setting.

Optimization options higher than -O3 were omitted as well because the produced executables did not

differ from the -O3 setting. For gcc, all options were used, and architecture options were used for -O2,

-O3 and -Os. To limit the duration of the tests, architecture options were not used for the other settings.

This selection was made because these settings do not attempt to optimize a lot.

Measurement methodology

Three aspects of compiler performance were measured; compilation speed, segment sizes and the

execution speed of the compiled program.

Used programs

The speed measurements were done using a modified version of the time program found on MINIX. The

original time program runs the specified command once, and when the command is finished, it prints the

real, user, and system time in seconds rounded to two decimals. The modified program, called ccb_time1,

times in clock ticks instead of seconds. Ccb_time performs timing in such a way that the specified

command is run once, and is then looped for a number of times. By executing the command once before

starting the loop, the command can take advantage of the file system cache in subsequent executions,

thereby minimizing the effect of the disk speed on the timing. The command is looped for a minimum of

N times (N is passed as parameter), and if after N times the real, user and system times are below 60 ticks,

the loop continues to a maximum of 50 loops. For completely CPU bound commands, the 60 tick limit is

optional for the system time to prevent unnecessary long loops. The output of ccb_time is appended in a

comma separated format to a specified file.

Size measurements were performed using a modified version of the size command called ccb_size. It

appends its output to a specified file, like ccb_time, instead of printing to standard output.

1 ccb for c compiler benchmark

8 MINIX 3 C Compiler Performance

Compilation speed measurement

The compilation speed was measured for each combination of compiler and optimization option

parameters. To measure this, the selected programs were set up in such a way that the Makefile of each

program uses the environment variables CCB_CC and CCB_OFLAGS for the compiler command and

the optimization parameters respectively. For CCB_CC the ccb_time command combined with the

compiler command was set like the following example;

/path/to/ccb_time/ccb_time 5 output_file “gcc” "-O3 -march=pentium3"

After the Makefile has been processed, the total time can be extracted by adding the results from the

output file to give a total time spent by the compiler program. This means that the overhead of the make

program, and other compilation related commands like ar (archiver) are not measured.

Segment size measurement

After compilation, the segment sizes can be easily measured by using the ccb_size program on the

produced executable. This program measures the text, data, BSS, stack and memory sizes, but only the

text, data and BSS segments are of interest to this test since stack and memory sizes can be adjusted by

the chmem program.

Executable performance

Measuring executable performance has been done in a straight forward way. For each selected programs a

test set was made which lets the program do some work which takes a relatively long time to complete.

To measure the time these tasks take, the ccb_time program was used. The details of the test set for each

program is explained in section 1.

Program selection

To be able to measure the performance of the compilers with the optimization options, a selection of

programs was needed. These programs needed to compile without errors with both cc and gcc, and

needed to be able to run without interactive input to make automated testing possible.

The following programs were used in the measurements;

• awk

• bc 1.02

• bzip2 1.03

• gzip 1.2.4

• python 1.5.2

• sed

• sorting algorithms (bubblesort, insertionsort, selectionsort and quicksort)

• whetstone

Awk accepts input instructions to usually transform input files or perform calculations on an input file. It

can also be used to perform calculations without input. Bc is an arbitrary precision calculator program,

which works interactively or uses input scripts. Bzip2 and gzip are lossless compression programs. Python

is an interpreter program for the general-purpose, high-level programming language Python. Sed is a

stream editor program which accepts regular expression commands to transform input streams. The

sorting algorithms are implementations of different sorting algorithms in C (4), which are executed on

randomly initialized arrays. Whetstone (5) (6) is a synthetic benchmark which was published in ALGOL

in 1976. It was designed to provide a benchmark with which the performance of new hardware could be

estimated for general programs. It runs for a specified amount of loops, and the time spent to perform

Measurement set-up 9

these loops is used as a measure of performance. The test consists of 11 weighted modules, each

measuring a certain aspect of performance.

To test some specific characteristics of compilation speed, two types of code were tested in the

compilation speed part only. The effects of identifier length and function size have been tested using code

files generated for different amounts of lines. To test the effect of identifier length, code files were

generated only containing repeated assignments to zero of the same variable. The length of this variable

name was set to a single character for the short identifier test, and to 624 for the long identifier test. To

test the effect of function size, code files were generated by repeating the code for the insertion sort

algorithm in one big function and in separate functions for the big function and small function cases

respectively.

Test machines

The complete test set was run on two different computers, the specifications are listed below.

Table 4 - Test machines specifications

 Machine 1 Machine 2

CPU Intel Pentium II Intel Pentium III EB

Clock frequency 350 MHz 1 GHz

Memory 192 MB (3x64MB) 512 MB (2x256MB PC133)

Motherboard Intel SE440BX-2 Gigabyte 6VX7-4X

Hard drive Quantum Fireball CR4.3A (4.3 GB) Maxtor D740X-6L (40GB)

Whetstone score

(built with gcc 3.4.3,

no optimization)

4.0 MIPS 11.6 MIPS

Machine 1 will be referred to as Pentium 2 350MHz, and machine 2 as Pentium 3 1GHz from now on.

4. Compilation

The results of the compilation speed test are presented and discussed in this section. First the separate

tests of compiler behaviour are discussed, and then the compilation times of the tested programs are

discussed.

Compilation time factors

To analyze how the compilation time is affected by several factors, several tests were conducted to

measure these effects. To test the influence of the input file size, several code fragments were repeated to

generate code files of varying sizes, which were then compiled as object files to exclude the linker from

measurement. The code fragments used were three different types; integer assignment with a short

identifier, integer assignment with a long identifier, and the insertion sort algorithm. These fragments are

listed in the appendix, code listings 1, 2 and 3. The bold sections represent the part which is repeated, and

the identifier in listing 1 is replaced with i for the short identifier, and 24 times the alphabet (624

characters) for the long identifier version. In listing 3, the %% part of the function identifier is replaced by

a number for each repeat.

10 MINIX 3 C Compiler Performance

Figures 5 and 6 in the appendix show the results of cc for the integer assignment test. Because cc -O3 is

much slower than the other presets for a high number of lines, the results are shown separately in figure 6

as well. Trend lines (generated by Microsoft Excel 2007) are shown in these figures, which are also used

in other figures for this section. Figure 5 shows a linear relation for both -O1 and -O2 with the short

identifier, and -O1 with the long identifier. -O2 with the long identifier shows a polynomial relation.

Figure 6 shows a polynomial relation for -O3. Important to note here, is that this test compiles large

functions instead of a lot of small functions. As will be seen further on, this influences the behaviour of

the compiler in this aspect of performance. Comparing -O1 and -O2, it is clear that -O2 compiles slower

than -O1, which is as expected. The compilation time of -O3 is extremely large compared to the other

presets, especially for a large number of lines, but this is entirely caused by the polynomial relation this

presets shows.

Figure 7 shows the results of gcc 3.4.3 for the same test. Compared to cc, gcc does not have a preset

which shows a different relation than the other presets, only the coefficient of the lines differs. At first

sight, the trend lines look linear, but in fact they are polynomial. The presets -O2 -O3 and -Os show the

same times, with the exception of a peak for -O2 and -O3 at 3000 lines in the short identifier case. Why

this peak is only present for these presets is not clear, perhaps some sort of caching in gcc causes this

peak for this specific number of lines. In this case, compilation time is highest for the preset -O0 which is

quite unexpected since this is supposed to give the lowest compilation time. Other than these cases, the

results are as expected, and again there is a difference between the short identifier and the long identifier

with the short identifier compiling faster.

The last figure concerning compilation user time for the integer assignment code is figure 8, which shows

the results of gcc 4.1.1. Compared to version 3.4.3, the presets show the same ordering in compilation

time, only the -O1 -O2 -O3 and -Os show a stronger polynomial relation. For a lower number of lines

these presets use slightly less compilation time in version 4.1.1 than in version 3.4.3, but for a high

number of lines the opposite is true. The preset -O0 uses less compilation time in version 4.1.1 than in

version 3.4.3.

Figures 9, 10, and 11 in the appendix contain the results of the insertion sort compilation test for cc, gcc
3.4.3 and gcc 4.1.1 respectively. The figures combine the results of the separate functions and combined

function code. For the combined function code, cc shows a polynomial relation for each preset. The

separate functions code however, shows a linear relation for each preset. These results show that for cc,

the time complexity of function compilation has an order of n² where n is the function size. The linear

behaviour for the separate functions code proves that this order of n² is caused by the function size, and

not the total input size. In the case of the integer assignment, this time complexity is only clearly shown

for -O3. This is probably caused by the trivial code, in contrast to the insertion sort algorithm.

The time complexity of gcc has an order of n² for both the separate functions code and the combined

function code, for every preset. The difference between the two types of code is only that the combined

function code compiles faster than the separate function code. Compilation time goes from lowest to

highest for both versions of gcc in the following order of presets; -O0, -O1, -Os, -O2, -O3. Comparing

version 3.4.3 to 4.1.1 shows that the -O0 preset compiles in roughly the same time in version 4.1.1, but

the other presets need more time than in version 3.4.3.

So far in this section, only the user time of the compiler has been studied. This only takes into account

the amount of processing time the compiler, which is not the only factor which determines how much

time a compiler needs to compile a complete program. Another factor is how long loading and

initialization of the compiler takes before it starts to compile. To analyze this, the real times for the

compilation tests above can be analyzed. These results are shown in figures 12-17 in the appendix. Using

extrapolation, the value for 0 lines of code can be approximated for each compiler. For cc, the different

presets show different values when extrapolating the lines, with a rough estimation of 7 ticks (~117

Compilation 11

msec.) for -O1, 12 ticks (~200 msec.) for -O2, and 20 ticks (~333 msec.) for -O3. This difference can be

explained by the way the cc compiler is constructed. For optimization, it uses sub processes like em_opt

and em_opt2. Since these programs need to be loaded separately, depending on what optimization preset

is used, the startup times vary for each preset. For gcc, every preset has the same startup time, roughly 40

ticks (~667 msec.) for version 3.4.3, and roughly 115 ticks (~1.92 sec.) for version 4.1.1. These startup

times are higher than those of cc, especially for gcc 4.1.1 the startup time is much higher. High startup

times become a large factor in total compilation times for build processes which make many calls to the

compiler for small input files. In these types of build processes, the startup time is a very large part of

each compiler call because the user time is low for small input files.

Program compilation time

The absolute compilation times of the selected programs for both test systems are shown in figures 1 and

2 of the appendix. Programs are sorted by number of compiler executions from left to right, high to low.

The times are divided in three sections, real, user and system. The top rows indicate the program, the

number of times the compiler was started during the build, and the total size of the source files, code and

headers in kilobytes. The cases where compilation failed are empty cells. Python, gzip and awk all failed in

the case of cc -O3, where the compiler returns the following type of error message;

/usr/lib/em_opt2: error on line 766: This is not allowed outside a

procedure

The em_opt2 program handles optimization of the intermediate EM code (7), so the error statement has

to do with the code produced by the C front-end and the optimizations already performed on that code.

Investigating and fixing the problem was outside the scope of this test, so the results for cc -O3 are

incomplete. Awk failed to compile under gcc 4.1.1 because the behavior of this version is different from

gcc 3.4.3. Version 4.1.1 fails with an error message (static declaration of [identifier] follows non-static

declaration) where gcc 3.4.3 does not. Because the code needed more than some simple fixes to fix this

error, and the code does compile in version 3.4.3, the code was left as it was.

From the absolute compilation times, the user/real ratios can be calculated. This ratio indicates how CPU

bound or I/O bound a process is, where a high ratio is CPU bound, and low I/O bound. The results

from the Pentium 2 system are shown in table 5, sorted by the ratio of the total source size and number

of compiler executions.

This table shows that the compiler is less CPU bound when the ratio of size versus executions is low,

because in this situation, the time spent loading the compiler (which does not count for user time) is a

larger factor for the total time.

The lowest ratios are found for gcc -O0. This is explained by the lack of optimization and the longer

startup time for the gcc compiler. Comparing the gcc versions shows that version 4.1.1 is even less CPU

bound than 3.4.3, which can be explained by the higher startup time for version 4.1.1.

The gcc compiler becomes more CPU bound for higher optimization parameters, which can be expected

since the compiler needs to do more processing for the same file. Cc however behaves in an opposite

way, becoming less CPU bound at higher settings, with the exception of bzip2 with -O3 parameter. The

user time does increase, so more processing is being performed as expected, however the compiler seems

to do more I/O as well.

In order to compare compilation times independently from program size, figures 3 and 4 of the appendix

show the times indexed to the default case of cc -O1. The formula used for this index is the time divided

by the time of cc -O1, times 100. A value of 100 is thus equal to the time of cc -O1, 50 is half, 200

double, and so on. With these values, an average score is calculated for each case. This average excludes

12 MINIX 3 C Compiler Performance

the values for awk, since this failed to compile in gcc 4.1.1. Cc -O3 does not have an average because two

values are missing, so the result would not be comparable to the rest.

Table 5 - Compilation user/real ratio (Pentium 2)

 sed bzip2 python gzip bc awk
whet-

stone
sorting

AVERAGE

excl. awk

Total size / compiler executions (kB) 45.04 21.70 19.51 16.69 16.18 10.43 7.93 1.97 n/a

Compiler Optimization parameters

cc -O1 76.87% 80.72% 67.64% 58.25% 60.99% 58.50% 54.14% 34.82% 61.92%

 -O2 69.39% 73.19% 59.07% 48.35% 53.81% 50.22% 48.25% 24.29% 53.76%

 -O3 67.61% 76.51% 46.23% 39.56% 19.22%

 gcc 3.4.3 -O0 33.37% 54.32% 44.58% 31.06% 36.80% 36.56% 17.83% 7.45% 32.20%

 -O1 49.21% 69.02% 56.61% 42.37% 47.44% 48.64% 26.10% 9.05% 42.83%

 -O2 66.03% 82.10% 69.77% 55.52% 60.23% 62.17% 37.31% 11.38% 54.62%

 -O2 -march=pentium2 66.69% 82.08% 69.81% 56.30% 60.47% 62.99% 39.00% 11.28% 55.09%

 -O2 -mtune=pentium2 66.69% 82.13% 69.83% 56.06% 60.48% 62.66% 38.49% 11.23% 54.99%

 -O3 72.64% 85.02% 76.82% 60.27% 71.42% 75.92% 41.35% 12.72% 60.03%

 -O3 -march=pentium2 73.17% 85.19% 76.72% 61.20% 71.08% 76.09% 43.14% 13.46% 60.57%

 -O3 -mtune=pentium2 72.85% 85.17% 76.87% 61.07% 71.52% 76.03% 42.87% 13.11% 60.50%

 -Os 64.84% 80.31% 67.83% 52.83% 57.39% 59.50% 34.24% 11.13% 52.65%

 -Os -march=pentium2 65.65% 80.73% 68.27% 53.56% 57.73% 60.86% 35.12% 10.86% 53.13%

 -Os -mtune=pentium2 66.35% 80.56% 68.38% 53.58% 57.78% 61.00% 35.64% 11.17% 53.35%

gcc 4.1.1 -O0 29.47% 31.28% 20.71% 14.24% 17.42% 16.43% 5.72% 19.32%

 -O1 56.90% 58.62% 38.49% 29.80% 31.21% 24.08% 8.54% 35.38%

 -O2 65.95% 67.75% 46.37% 36.68% 38.76% 28.94% 10.75% 42.17%

 -O2 -march=pentium2 67.38% 69.02% 47.33% 37.66% 39.50% 33.03% 11.12% 43.58%

 -O2 -mtune=pentium2 66.80% 68.43% 47.17% 37.82% 39.26% 33.03% 10.96% 43.35%

 -O3 67.93% 71.76% 53.08% 41.93% 51.16% 38.61% 12.87% 48.19%

 -O3 -march=pentium2 69.28% 72.70% 53.81% 43.09% 51.94% 48.72% 13.14% 50.38%

 -O3 -mtune=pentium2 69.67% 72.24% 53.84% 43.03% 51.65% 49.04% 13.04% 50.36%

 -Os 64.03% 58.21% 43.57% 34.26% 35.88% 25.40% 9.75% 38.73%

 -Os -march=pentium2 64.92% 59.84% 44.91% 35.37% 37.00% 29.05% 10.28% 40.20%

 -Os -mtune=pentium2 65.28% 59.11% 44.86% 35.39% 37.07% 27.92% 10.10% 39.96%

Used color scale 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

The table shows that gcc is slower than cc for every combination of program and optimization

parameters, only scoring better than cc -O3 for bzip2 with gcc 3.4.3 -O0. For stronger optimization

parameters, gcc is severely slower than cc, with increases of a factor 10 and more for several programs. Cc

shows an increase in real compilation time of about 50% for -O2 on the Pentium 2 system, and about

60% on the Pentium 3. In the cases where compilation with -O3 succeeded, increases of over 100% are

seen on both systems, with the Pentium 3 showing slightly larger increases. Gcc shows more variation for

the different programs, not only relative to cc, but also relative to its own optimization parameters. For

example, on the Pentium2, compiling gzip takes 74.1% longer with -O3 than with -O0, but for bzip2 this

increase is 206.5%. The sorting program shows almost no difference for each of the optimization settings,

but this can be explained by the relatively long startup time of gcc, combined with the very small input

size per execution (see table 5). Looking at the average values, gcc is a lot slower than cc, even when no

optimization is applied. This can only partly be attributed to the longer startup time, since the user times

show a big increase as well.

With the average values, an ordering can be made to show how the different compilers and optimization

parameters perform on average. The results sorted by real values are shown in figure 1 and figure 2

below.

Comparing the results for the two systems, the ordering hardly differs. Only the positions 11 through 14

are reordered, and positions 23 and 24 are switched. The averages show that the cc compiler is fastest,

followed by version 3.4.3 of gcc, and gcc 4.1.1 is slowest. Interesting is that gcc 4.1.1 is even slower

without optimization options than all the other compiler / optimization parameter combinations. Both

versions of gcc clearly show that compilation time increases for stronger optimization parameters -O1

Compilation

-O2 -O3. The size optimization parameter (

architecture specific parameters increase compilation time slightly in every case.

In the system values, cc shows an increase for

optimization parameter. The figures show th

than version 4.1.1. Looking back at tables

on the left of awk. These programs have a much larger total source size than the programs to

awk which can be seen in the row “Total source size”. Another difference between these sets of programs

is that the larger programs consist of multiple .c and .h files. Somehow version 3.4.3 uses more system

time to process these files.

Figure 1 - Pentium 2 Average compilation times

gcc 4.1.1 -O3 -march=pentium2

gcc 4.1.1 -O3 -mtune=pentium2

gcc 4.1.1 -O3

gcc 4.1.1 -O2 -march=pentium2

gcc 4.1.1 -O2 -mtune=pentium2

gcc 4.1.1 -O2

gcc 4.1.1 -Os -march=pentium2

gcc 4.1.1 -Os -mtune=pentium2

gcc 4.1.1 -Os

gcc 4.1.1 -O1

gcc 3.4.3 -O3 -march=pentium2

gcc 3.4.3 -O3 -mtune=pentium2

gcc 3.4.3 -O3

gcc 4.1.1 -O0

gcc 3.4.3 -O2 -march=pentium2

gcc 3.4.3 -O2 -mtune=pentium2

gcc 3.4.3 -O2

gcc 3.4.3 -Os -march=pentium2

gcc 3.4.3 -Os -mtune=pentium2

gcc 3.4.3 -Os

gcc 3.4.3 -O1

gcc 3.4.3 -O0

cc -O2

cc -O1

Pentium 2 350MHz
(indexed to cc

O3. The size optimization parameter (-Os) takes just a little shorter to compile than

architecture specific parameters increase compilation time slightly in every case.

In the system values, cc shows an increase for -O2, yet for gcc the values are the same for every tested

optimization parameter. The figures show that the average system time for version 3.4.3 is a lot higher

than version 4.1.1. Looking back at tables XXX and YYY, this difference only occurs for the programs

on the left of awk. These programs have a much larger total source size than the programs to

awk which can be seen in the row “Total source size”. Another difference between these sets of programs

is that the larger programs consist of multiple .c and .h files. Somehow version 3.4.3 uses more system

Pentium 2 Average compilation times

0 200 400 600 800 1000 1200

march=pentium2 - 24

mtune=pentium2 - 23

O3 - 22

march=pentium2 - 21

mtune=pentium2 - 20

O2 - 19

march=pentium2 - 18

mtune=pentium2 - 17

Os - 16

O1 - 15

march=pentium2 - 14

mtune=pentium2 - 13

O3 - 12

O0 - 11

march=pentium2 - 10

mtune=pentium2 - 9

O2 - 8

march=pentium2 - 7

mtune=pentium2 - 6

Os - 5

O1 - 4

O0 - 3

O2 - 2

O1 - 1

Time relative to cc -O1 at 100

350MHz - Average compilation times, sorted by Real
(indexed to cc -O1, average excluding awk, cc -O3 omitted, lower is better)

13

compile than -O2. Gcc’s

O2, yet for gcc the values are the same for every tested

at the average system time for version 3.4.3 is a lot higher

, this difference only occurs for the programs

on the left of awk. These programs have a much larger total source size than the programs to the right of

awk which can be seen in the row “Total source size”. Another difference between these sets of programs

is that the larger programs consist of multiple .c and .h files. Somehow version 3.4.3 uses more system

1400 1600

Average compilation times, sorted by Real
O3 omitted, lower is better)

Real

User

System

14

Figure 2 - Pentium 3 Average compilation times

gcc 4.1.1 -O3 -mtune=pentium2 -

gcc 4.1.1 -O3 -march=pentium2 -

gcc 4.1.1 -O3 -

gcc 4.1.1 -O2 -march=pentium2 -

gcc 4.1.1 -O2 -mtune=pentium2 -

gcc 4.1.1 -O2 -

gcc 4.1.1 -Os -march=pentium2 -

gcc 4.1.1 -Os -mtune=pentium2 -

gcc 4.1.1 -Os -

gcc 4.1.1 -O1 -

gcc 4.1.1 -O0 -

gcc 3.4.3 -O3 -mtune=pentium2 -

gcc 3.4.3 -O3 -march=pentium2 -

gcc 3.4.3 -O3 -

gcc 3.4.3 -O2 -march=pentium2 -

gcc 3.4.3 -O2 -mtune=pentium2

gcc 3.4.3 -O2

gcc 3.4.3 -Os -march=pentium2

gcc 3.4.3 -Os -mtune=pentium2

gcc 3.4.3 -Os

gcc 3.4.3 -O1

gcc 3.4.3 -O0

cc -O2

cc -O1

Pentium 3 1GHz
(indexed to cc

 MINIX 3

compilation times

0 200 400 600 800 1000 1200

- 24

- 23

- 22

- 21

- 20

- 19

- 18

- 17

- 16

- 15

- 14

- 13

- 12

- 11

- 10

mtune=pentium2 - 9

O2 - 8

march=pentium2 - 7

mtune=pentium2 - 6

Os - 5

O1 - 4

O0 - 3

O2 - 2

O1 - 1

Time relative to cc -O1 at 100

Pentium 3 1GHz - Average compilation times, sorted by Real
(indexed to cc -O1, average excluding awk, cc -O3 omitted, lower is better)

 3 C Compiler Performance

1400 1600

Average compilation times, sorted by Real
O3 omitted, lower is better)

Real

User

System

Executable segment sizes 15

5. Executable segment sizes

The second part of compiler performance measured is the segment sizes of the produced executables. As

explained in section 1 - Segment size measurement, only the Text, Data and BSS segment are of interest.

Because the Text segment contains the instructions, it is most interesting when looking from an

optimization perspective, both for performance and for size. The Data segment and BSS segments

contain the initialized and un-initialized global variables respectively.

Results

The results are presented as absolute values in figure 18 of the appendix, and indexed to the default case

of cc -O1 in figure 19. Because the produced executables are identical for both systems, with the

exception of those produced with architecture specific optimization parameters, the results are presented

in single tables instead of separate tables per test system. The results of gcc with -mtune=pentium3 are

not displayed because the sizes were equal to the executables compiled with -mtune=pentium2.

Although the set of programs is not elaborate enough to draw hard conclusions about the optimization

strategies used when looking at the segment size, it does give an indication of what can usually be

expected.

In the table showing the sizes in bytes, the sizes of each segment can be compared to see the share each

segment has in the total size of the executable. For example, the BSS segment of the sorting programs is

very large compared to the other segments. This is caused by the use of large uninitialized arrays which

are filled and then sorted at run time. Gzip also has a relatively large BSS segment, because it was

compiled using buffers which are declared at compile time. Python has Text and Data segments which are

much larger than the other programs. This is not very surprising since Python is an interpreter for a high

level language, and thus has to implement a lot more functionality than the other programs. Apart from

these observations, this table also indicates how relevant each value in the indexed table is. For example,

looking at the Data segment for the sorting program, gcc has an indexed value of 228.57 but the absolute

value is 256 against 112, which is small compared to the size of the Text segment.

The values for the Text segment of the programs compiled with cc -O2 in the indexed table show that

the optimization used by cc decreases the size of the segment in every case. The behaviour for cc with -

O3 is less clear because three results are missing due to failed compilation, but the value for the sorting

programs indicate that the optimization strategies used here do not only remove instructions. Gcc shows

a similar behavior when comparing its performance optimization parameter results. All programs show a

decrease in Text segment size for optimization parameters -O1 and -O2 when compared to -O0, except

for the whetstone program when architecture specific optimization is added (gcc version 3.4.3). Size

optimization in gcc always produces a smaller Text segment than gcc’s other optimization parameters, for

Python this difference is 33%1 for version 3.4.3 and 35%2 for version 4.1.1. In bytes these decreases are

168 kB and 185 kB respectively.

The Data segment is always the same size in cc, and shows small variation among the performance

optimization parameters of gcc. Size optimization in gcc does not increase the segment size, and can

decrease segment size up to 16%3.

1 Comparing -O3 to -Os
2 Comparing -O0 to -Os
3 Comparing gcc 3.4.3 -O3 and -Os for awk

16 MINIX 3 C Compiler Performance

The BSS segment is the same size for every optimization parameter, so the tested optimization

parameters do not use any strategies which have effect on the BSS segment size.

Comparing cc to gcc, it is not possible to pick a clear winner with respect to segment sizes. Looking at the

results for the Text segment, the compiler which generates the smallest segment depends on the program

being compiled. For example, bzip2 has a smaller Text segment with gcc when optimization is used,

especially when optimizing for size. On the other hand, gzip is 7% to 42% larger than cc -O1 when

compiled by gcc. The results for the Data segment show a similar behaviour, where gcc produces a

smaller segment for some programs, and a larger segment for others. One point where a clear distinction

can be made is the BSS segment; cc produces a smaller segment for each tested program.

To make an ordering in compiler / optimization parameter combinations, the average sizes of the Text

segment have been sorted and displayed in figure 3 below. The averages were calculated without awk, and

cc -O3 has been omitted from the results because too many programs failed to compile.

Figure 3 - Average text segment sizes

On average, cc produces a smaller Text segment than gcc, with cc -O2 producing a 2% smaller segment

than the default cc -O1. Gcc generates the smallest segment when using optimization for size, with

version 4.1.1 generating slightly smaller segments. Adding architecture specific optimization produces a

marginally larger segment, but the difference is under 1% for version 3.4.3 and even under 0.1% for

version 4.1.1. Optimization for size is followed by -O1 and -O2, and -O2 with architecture specific

optimization produces a 5% larger segment than without these optimizations. The difference between the

largest result for size optimization and the next smallest, gcc 3.4.3 -O1 is 7.8% which shows that the size

optimization parameter is very effective compared to the other optimization options for gcc. At the

50 60 70 80 90 100 110 120 130 140 150

gcc 4.1.1 -O3 -mtune=pentium2 - 30
gcc 4.1.1 -O3 -march=pentium2 - 29
gcc 4.1.1 -O3 -march=pentium3 - 28
gcc 3.4.3 -O3 -mtune=pentium2 - 27
gcc 3.4.3 -O3 -march=pentium2 - 26
gcc 3.4.3 -O3 -march=pentium3 - 25

gcc 4.1.1 -O0 - 24
gcc 4.1.1 -O3 - 23
gcc 3.4.3 -O0 - 22
gcc 3.4.3 -O3 - 21

gcc 4.1.1 -O2 -mtune=pentium2 - 20
gcc 4.1.1 -O2 -march=pentium2 - 19
gcc 4.1.1 -O2 -march=pentium3 - 18
gcc 3.4.3 -O2 -march=pentium2 - 17
gcc 3.4.3 -O2 -mtune=pentium2 - 16
gcc 3.4.3 -O2 -march=pentium3 - 15

gcc 4.1.1 -O2 - 14
gcc 4.1.1 -O1 - 13
gcc 3.4.3 -O2 - 12
gcc 3.4.3 -O1 - 11

gcc 3.4.3 -Os -march=pentium2 - 10
gcc 3.4.3 -Os -mtune=pentium2 - 9
gcc 3.4.3 -Os -march=pentium3 - 8

gcc 3.4.3 -Os - 7
gcc 4.1.1 -Os -march=pentium3 - 6
gcc 4.1.1 -Os -march=pentium2 - 5
gcc 4.1.1 -Os -mtune=pentium2 - 4

gcc 4.1.1 -Os - 3
cc -O1 - 2
cc -O2 - 1

Size relative to cc -O1 at 100

Average text segment sizes
(indexed to cc -O1, average excluding awk, cc -O3 omitted, lower is better)

Executable segment sizes 17

bottom end of the chart, where the largest segment results are shown, -O3 produces a smaller segment

than the -O0 of the same compiler version. Version 3.4.3 generates the smaller segment here, in contrast

to the size optimization where version 4.1.1 generates the smaller segment. The difference is bigger here,

with 4.1.1 being 1.8% larger for -O0 and 2.8% larger for -O3. The combination of -O3 and architecture

specific optimization produces the largest segment. In these cases, the segments produced by version

3.4.3 are again smaller than version 4.1.1.

6. Execution

In this section, the results of the execution performance measurements are presented and discussed. This

part of compiler performance is probably most interesting for most readers, since compilation time is

only an issue during development in the vast majority of cases, and segment sizes are not very important

on the majority of x86 based hardware today. Execution performance has been measured by timing each

program as it executes a set of tests, to create a benchmark. Because some benchmarks perform I/O and

others use almost none at all, the benchmarks have been split into two sets. Set 1 is the set of CPU bound

benchmarks, so only user time is presented for this set. Real and system times are left out because the

former is almost equal to the user time, and the latter is too small to measure in these benchmarks. Set 2

is the set of benchmarks which are less CPU bound, and therefore have a measurable amount of system

time, so all times are included in their results.

This section is laid out as follows; first the used benchmarks are listed and explained, then the results for

set 1 are presented and discussed, then the same follows for set 2. Gcc’s architecture specific optimization

is discussed last, so this subject will not be discussed in detail in the sections before it.

Used benchmarks

The benchmarks used in the measurements, and in which set they are included, are listed and explained in

table 6. Where relevant, the used code is included in the appendix.

In most cases, the program was executed repeatedly using ccb_time (see Used programs in the section

Measurement set-up). Some exceptions were made to this method, where the benchmark executed

sufficiently long enough for a reliable measurement. The benchmarks that were not repeated are the

sorting programs (except quicksort), whetstone, and pybench. Pybench has also been timed differently

than the other benchmarks, because the program has its own way of calculating the performance of

python. Instead, the minimum time total which pybench prints in the output has been parsed and used as

real time in the data.

18 MINIX 3 C Compiler Performance

Table 6 - List of used benchmarks

Program Benchmark Set Description

awk duplicates 1 Detects duplicate words in the input (like “is is”).

line_numbers 2 Prints the line number followed by a tab before each line of input.

pi 1 Calculates π using the Bailey-Borwein-Plouffe formula with 500000

terms.

word_count 2 Calculates the word count for each word found in the input and prints

the results.

bc e 1 Calculates � with 2000 decimals by calculating 8000 terms of the

following series;

� � � 1
�!

�

�	

pi 1 Calculates π using 1000 terms of the Bailey-Borwein-Plouffe formula.

Uses 1000 decimals in the calculation.

bzip2 compression 2 Compresses a large xml file (~ 6 MB), a large text file (~ 1.8 MB), a

MPEG 4 encoded avi file (~ 3.3 MB) and a jpeg file (~ 300 kB) at

maximum compression (option -9).

decompression 2 Decompresses the compressed files.

gzip2 compression 2 Compresses the same set of files as bzip2 again at maximum

compression (option -9).

decompression 2 Decompresses the compressed files.

python pybench 1 Pybench is a benchmark suite currently included in the source tree of

Python. The tested version 1.5.2 of Python did not contain this

however, so the latest version (revision 61317) at the time of

measurement was taken from the subversion repository at

http://svn.python.org/projects/python/trunk/Tools/pybench. The file

pybench.py was modified because it requires a module “platform”

which was not present. Only code printing the platform information

was removed.

The program was run with the parameters -n 1 -w 20, which indicate

one loop at warp 20. This was done to let the benchmark run for a

shorter time than default.

pystone 1 This is a translation to python of the dhrystone benchmark program

(8). Pystone is included in the directory Lib/test of python 1.5.2.

sed reverse 1 Reverses the character order per line.

selective_print 2 Selectively prints lines containing the word “the”.

substitute 2 Substitutes parts of input that match a certain format.

sorting bubble 1 Sorts a randomly initialized integer array with 65536 items using

bubblesort.

insertion 1 Same but with insertionsort.

selection 1 Same but with selectionsort.

quick 1 Same, but with a larger array of 655360 items and quicksort. The larger

array was necessary because quicksort is too fast for the smaller array.

whetstone whetstone 1 Executes the whetstone program with 5000 loops (instead of the

default 1000).

Execution 19

Benchmark set 1 results

Following the same approach as in section 4 dealing with compilation speed, the results are presented in

three forms. First the absolute measurements are presented with time in clock ticks (appendix, figure 20),

then the results indexed to cc -O1 (appendix, figure 21), and finally the averages of these indexed values

are sorted and presented in a chart (figure 4 and figure 5). In addition to these results, the performance

differences between the presets are also analyzed.

In the absolute results, the length of the benchmarks can be compared, which shows that of the sorting

algorithms, bubblesort is the slowest followed by selectionsort, insertionsort, and quicksort. Quicksort is

extremely fast in comparison, even though the benchmark for quicksort sorts a set which is 10 times

larger than the other algorithm’s benchmarks. Some large differences already can be seen between the

different compilers and optimization parameters in these numbers, but the indexed table will show this

more clearly.

From the indexed table, it is clear to see just looking at the colours (green and red indicate faster/slower

than cc -O1 respectively) that gcc is faster in the vast majority of these benchmarks. The lowest value can

be found for the e benchmark of bc compiled with gcc 3.4.3 with -O2, which is 26.1 on the Pentium 2

system and 25.8 on the Pentium 3. Even though these cases are the lowest points, these values show that

when performance is important, it is worth investigating the performance of a program when compiled

with different compilers and optimization parameters.

In general, one would expect that the execution performance of programs compiled with the more

aggressive optimization presets to be higher than the less aggressive presets. To analyze this, the

differences between each successive preset have been calculated for each benchmark. This calculation

uses the following form;
OOOO����nnnn����1111� � � � ---- OnOnOnOn

OnOnOnOn . If the theory applies, for each successive preset this number will

be below 0 to indicate a lower execution time. Tables 7, 8, and 9 show the results for the compilers cc,

gcc 3.4.3, and gcc 4.1.1 respectively. Architecture specific optimization is ignored for these results, and

empty cells indicate a failure of compilation. Awk is not shown in table 9, because it failed to compile in

this compiler, gcc 4.1.1.

Looking at the results of cc, -O2 performs better than -O1 in most benchmarks, with a lowest value of -

4.5% for the pi benchmark of bc. For -O3 the failure of compilation of awk and python limits the amount

of data available, but the data that is available does show that -O3 is not necessarily faster than -O2. In

some cases like quicksort or bubblesort the performance is substantially worse with 18% and 24% longer

execution times for the benchmarks respectively. The pi benchmark of bc shows that -O3 can result in a

big performance increase with 40% reduction in execution time.

For gcc, in most cases the values in the table are negative or only slightly positive, so the theory applies

pretty well to this data. There are some exceptions however, with the e benchmark of bc showing a large

degradation in execution performance for both version 3.4.3 and 4.1.1 of the compiler. In version 4.1.1,

the reverse benchmark of sed also shows a significant decrease in execution performance. In both versions,

the performance difference is largest between -O1 and -O0.

Overall it can be said that the performance optimization for gcc behaves as expected, with -O3 being

faster overall than -O2, which is faster overall than -O1, and -O0 is slowest. For cc, the theory does not

really apply very well, the preset -O3 shows mixed results, with some benchmarks performing faster while

other benchmarks perform slower.

20 MINIX 3 C Compiler Performance

Table 7 - CC optimization ordering (values from Pentium 2)

CC

OOOO2 2 2 2 ---- OOOO1111
OOOO1111

OOOO3 3 3 3 ---- OOOO2222
OOOO2222

Program Benchmark

awk duplicates 0.00%

awk pi -2.31%

bc e -2.63% -7.24%

bc pi -4.50% -40.31%

python pybench 0.07%

python pystone -1.77%

sed reverse 1.43% 0.06%

sorting bubble -1.04% 24.05%

sorting insertion 4.80% -9.81%

sorting quick -0.12% 17.69%

sorting selection -2.13% 0.46%

whetstone whetstone -2.70% 2.77%

Used color scale -50% -25% 0% 25% 50%

Table 8 - Gcc 3.4.3 optimization ordering (values from Pentium 2)

GCC 3.4.3

OOOO1 1 1 1 ---- OOOO0000
OOOO0000

OOOO2 2 2 2 ---- OOOO1111
OOOO1111

OOOO3 3 3 3 ---- OOOO2222
OOOO2222

Program Benchmark

awk duplicates -8.62% -2.80% -9.41%

awk pi -6.05% -2.10% -0.95%

bc e -57.05% -9.30% 58.44%

bc pi -57.99% -9.06% 1.27%

python pybench -3.89% -1.50% 0.15%

python pystone -22.67% -8.82% -4.88%

sed reverse -45.75% -3.16% -3.63%

sorting bubble -43.14% 0.70% -11.59%

sorting insertion -42.76% -0.03% -16.21%

sorting quick -23.13% 1.72% 0.00%

sorting selection -31.32% -2.04% -6.34%

whetstone whetstone -0.39% 1.78% -27.76%

Used color scale -50% -25% 0% 25% 50%

Table 9 - Gcc 4.1.1 optimization ordering (values from Pentium 2)

GCC 4.1.1

OOOO1 1 1 1 ---- OOOO0000
OOOO0000

OOOO2 2 2 2 ---- OOOO1111
OOOO1111

OOOO3 3 3 3 ---- OOOO2222
OOOO2222

Program Benchmark

bc e -56.28% -7.49% 40.70%

bc pi -51.29% -8.65% -8.57%

python pybench 0.08% -1.35% -0.48%

python pystone -33.45% -8.58% 0.97%

sed reverse -46.14% -10.55% 7.40%

sorting bubble -41.95% -4.11% -3.17%

sorting insertion -51.53% 2.24% -3.99%

sorting quick -21.09% -1.76% -1.80%

sorting selection -26.38% -2.93% -6.96%

whetstone whetstone 0.10% -2.10% -26.86%

Used color scale -50% -25% 0% 25% 50%

Execution 21

As in the previous sections, to compare the different compiler / optimization parameter combinations to

each other, an average was calculated for each combination except cc -O3. Again, this average excludes

awk because it failed to compile in gcc 4.1.1. The best average execution performance is achieved with

gcc 4.1.1 -O3 using -march architecture specific optimization with a value of 62 on the Pentium 2 and

using -mtune on the Pentium 3 (because -march is missing the whetstone value due to failure in

execution). Comparing both compilers shows that cc is only faster than gcc when no optimization is used

for the latter. Disregarding architecture optimization for the moment, the optimization presets of gcc

show a ordering of -O3 -O2 -O1 -Os -O0 from fast to slow for both versions of gcc. For each of these

presets, version 3.4.3 is slightly faster than 4.1.1. On averages, architecture specific optimization is better

for version 4.1.1, this is discussed in greater detail in the section Architecture optimization performance.

Concluding this benchmark set, when a program is very CPU bound, gcc can increase performance

significantly compared to cc. Double the performance is no exception, especially when using the more

aggressive optimization presets. Without architecture specific optimization, version 3.4.3 of gcc generally

generates faster code than version 4.1.1, but when this optimization is used, version 4.1.1 generates faster

code.

22 MINIX 3 C Compiler Performance

40 50 60 70 80 90 100 110

gcc 4.1.1 -O0 - 24

gcc 3.4.3 -O0 - 23

cc -O1 - 22

cc -O2 - 21

gcc 3.4.3 -Os -mtune=pentium2 - 20

gcc 3.4.3 -Os -march=pentium2 - 19

gcc 3.4.3 -O2 -march=pentium2 - 18

gcc 4.1.1 -Os - 17

gcc 4.1.1 -Os -march=pentium2 - 16

gcc 3.4.3 -O2 -mtune=pentium2 - 15

gcc 3.4.3 -Os - 14

gcc 4.1.1 -Os -mtune=pentium2 - 13

gcc 3.4.3 -O3 -mtune=pentium2 - 12

gcc 3.4.3 -O3 -march=pentium2 - 11

gcc 4.1.1 -O1 - 10

gcc 3.4.3 -O1 - 9

gcc 4.1.1 -O2 - 8

gcc 3.4.3 -O2 - 7

gcc 4.1.1 -O2 -march=pentium2 - 6

gcc 4.1.1 -O2 -mtune=pentium2 - 5

gcc 4.1.1 -O3 - 4

gcc 3.4.3 -O3 - 3

gcc 4.1.1 -O3 -mtune=pentium2 - 2

gcc 4.1.1 -O3 -march=pentium2 - 1

Time relative to cc -O1 at 100

Average execution times for set 1 - Pentium 2 350MHz
(indexed to cc -O1, average excluding awk, cc -O3 omitted, lower is better)

Figure 4 - Average execution times for set 1 (Pentium 2)

40 50 60 70 80 90 100 110

gcc 4.1.1 -O0 - 21

gcc 3.4.3 -O0 - 20

cc -O1 - 19

cc -O2 - 18

gcc 3.4.3 -Os -mtune=pentium3 - 17

gcc 3.4.3 -Os -march=pentium3 - 16

gcc 4.1.1 -Os - 15

gcc 4.1.1 -Os -mtune=pentium3 - 14

gcc 3.4.3 -O2 -march=pentium3 - 13

gcc 3.4.3 -O2 -mtune=pentium3 - 12

gcc 3.4.3 -Os - 11

gcc 3.4.3 -O3 -mtune=pentium3 - 10

gcc 3.4.3 -O3 -march=pentium3 - 9

gcc 4.1.1 -O1 - 8

gcc 3.4.3 -O1 - 7

gcc 3.4.3 -O2 - 6

gcc 4.1.1 -O2 - 5

gcc 4.1.1 -O2 -mtune=pentium3 - 4

gcc 4.1.1 -O3 - 3

gcc 3.4.3 -O3 - 2

gcc 4.1.1 -O3 -mtune=pentium3 - 1

Time relative to cc -O1 at 100

Average execution times for set 1 - Pentium 3 1GHz
(indexed to cc -O1, average excluding awk, cc -O3,

gcc 4.1.1 -march omitted, lower is better)

Figure 5 - Average execution times for set 1 (Pentium 3)

Execution 23

Benchmark set 2 results

The second set of results contains the benchmarks which use a measurable amount of system time. Their

results are discussed much the same way as the first set, only gcc’s optimization ordering is not discussed

as elaborately as before.

Figures 22 and 23 of the appendix show the absolute results for this set of benchmarks on the Pentium 2

and Pentium 3 system respectively. The benchmarks are sorted from high to low by the User/Real ratio

for cc -O1. The compression programs bzip2 and gzip both show asymmetric performance; compression

is slower than decompression. Comparing the two programs to each other, it is clear that bzip2 is much

slower than gzip (both programs compress and decompress the same set of files). Also bzip2 uses more

system time, which could be caused by a different buffering strategy, but can also be caused by the

different algorithms requiring a different access pattern. Again the absolute results show that gcc

performs better than cc in a lot of cases, which is illustrated further in the indexed tables.

The indexed results are shown in figures 24 and 25 of the appendix. Comparing the results for the user

times to the first set, the colours visually suggest that the differences between cc and gcc are not as large.

Comparing the average user values confirms this. Bzip2 shows the biggest performance increase for gcc

compared to cc, with roughly double the performance on the Pentium 2 when optimization is used, and a

slightly smaller performance increase on the Pentium 3. The other benchmarks do not come close to this

difference.

Moving on to the system values, the picture is very different. In this area, gcc is mostly slower than cc,

with the exception of the bzip2 compression benchmark, the awk word_count benchmark, and some

other benchmarks for certain optimization settings on the Pentium 2. On the Pentium 3, the two

mentioned benchmarks also show mostly increased system time. The gzip benchmarks show a big

increase in system time for gcc compared to cc. The Pentium 3 shows even greater differences than the

Pentium 2; on the former, decompression is more than 4 times as slow with gcc compared to cc -O1,

where on the latter the same benchmark is between 2 and 3 times as slow.

The indexed values for the real times show some differences with the user values. For example, the real

values of gcc for the decompression benchmark of gzip are noticeably higher than the user values,

especially on the Pentium 3. This is caused by the higher system times for gcc, which slow down the

benchmark. The benchmarks with a high user/real ratio have real values which are almost the same as the

user times because of the low impact of the system times on the total time.

Like the results of set 1, the results of set 2 have been graphically represented in figure 7 and figure 6 by

taking the averages of the indexed values, and sorting these values low to high. In this case, both the user

and real values are shown, and sorted by user. Compared to set 1, it is obvious that gcc’s architecture

optimization is more effective for this set of benchmarks, since all the top ten positions are taken by gcc

with architecture specific optimization options. Version 3.4.3 of gcc shows an ordering in performance of

-O3, -O2, -Os, -O1, and -O0 from high to low, for version 4.1.1 the same ordering applies, except -Os

comes after -O1. Gcc version 3.4.3 is a bit faster than gcc version 4.1.1 in this benchmark set. This also

holds when architecture optimization is used, in contrast to set 1 where version 4.1.1 was much faster

than version 3.4.3. As mentioned before, gcc does not perform as good compared to cc as in set 1,

nonetheless, in this set gcc generates faster code than cc when any optimization is used.

In conclusion for this set of benchmarks, for programs which are very IO bound, gcc can significantly

decrease performance compared to cc. When the program does some IO but is more CPU bound,

performance can benefit from the faster code gcc generates.

24

gcc 4.1.1 -O0 -

gcc 3.4.3 -O0 -

cc -O1 -

cc -O2 -

gcc 4.1.1 -Os -

gcc 4.1.1 -O1 -

gcc 3.4.3 -O1 -

gcc 3.4.3 -O2 -

gcc 4.1.1 -O2 -

gcc 3.4.3 -Os -

gcc 4.1.1 -Os -march=pentium2 -

gcc 4.1.1 -O3 -

gcc 4.1.1 -Os -mtune=pentium2 -

gcc 3.4.3 -O3 -

gcc 3.4.3 -Os -march=pentium2 -

gcc 4.1.1 -O2 -march=pentium2

gcc 3.4.3 -Os -mtune=pentium2

gcc 3.4.3 -O2 -march=pentium2

gcc 4.1.1 -O3 -mtune=pentium2

gcc 4.1.1 -O2 -mtune=pentium2

gcc 4.1.1 -O3 -march=pentium2

gcc 3.4.3 -O2 -mtune=pentium2

gcc 3.4.3 -O3 -march=pentium2

gcc 3.4.3 -O3 -mtune=pentium2

Average execution times for set 2
(indexed to cc

gcc 4.1.1 -O0 -

gcc 3.4.3 -O0 -

cc -O1 -

cc -O2 -

gcc 4.1.1 -Os -

gcc 4.1.1 -O1 -

gcc 4.1.1 -Os -march=pentium3 -

gcc 3.4.3 -O1 -

gcc 4.1.1 -O2 -

gcc 4.1.1 -O3 -

gcc 3.4.3 -Os -

gcc 4.1.1 -Os -mtune=pentium3 -

gcc 3.4.3 -O2 -

gcc 3.4.3 -O3 -

gcc 3.4.3 -Os -mtune=pentium3 -

gcc 4.1.1 -O2 -march=pentium3

gcc 3.4.3 -Os -march=pentium3

gcc 4.1.1 -O2 -mtune=pentium3

gcc 3.4.3 -O2 -mtune=pentium3

gcc 4.1.1 -O3 -mtune=pentium3

gcc 3.4.3 -O2 -march=pentium3

gcc 3.4.3 -O3 -mtune=pentium3

gcc 4.1.1 -O3 -march=pentium3

gcc 3.4.3 -O3 -march=pentium3

Average execution times for
(indexed to cc

Figure 7 - Average execution times for set

Figure 6 - Average execution times for set 2

 MINIX 3

0 20 40 60 80 100

- 24

- 23

- 22

- 21

- 20

- 19

- 18

- 17

- 16

- 15

- 14

- 13

- 12

- 11

- 10

march=pentium2 - 9

mtune=pentium2 - 8

march=pentium2 - 7

mtune=pentium2 - 6

mtune=pentium2 - 5

march=pentium2 - 4

mtune=pentium2 - 3

march=pentium2 - 2

mtune=pentium2 - 1

Time relative to cc -O1 at 100

Average execution times for set 2 - Pentium 2 350MHz
(indexed to cc -O1 sorted by user, average excluding awk, cc -O3

omitted, lower is better)

0 20 40 60 80 100

- 24

- 23

- 22

- 21

- 20

- 19

- 18

- 17

- 16

- 15

- 14

- 13

- 12

- 11

- 10

march=pentium3 - 9

march=pentium3 - 8

mtune=pentium3 - 7

mtune=pentium3 - 6

mtune=pentium3 - 5

march=pentium3 - 4

mtune=pentium3 - 3

march=pentium3 - 2

march=pentium3 - 1

Time relative to cc -O1 at 100

Average execution times for set 2 - Pentium 3 1GHZ
(indexed to cc -O1 sorted by user, average excluding awk, cc -O3

omitted, lower is better)

Average execution times for set 2 (Pentium 2)

verage execution times for set 2 (Pentium 3)

 3 C Compiler Performance

120 140

Pentium 2 350MHz
O3

User

Real

120 140

O3

User

Real

Execution

Architecture optimization performance

To judge the performance of the architecture specific optimization in gcc, I compared the benchmark

times of the executables compiled with

architecture parameters but with the same optimization preset

as before, so for example -O2 was set to 100 and

these indexed values, the average w

of set 1 and 2, and excludes awk,

4.1.1 fair. Awk was excluded like before because it fails to compile in version 4.1.1

excluded because the program failed to execute properly when compiled with

Bc was excluded for a different reason. As can

be seen in the indexed tables discussed before,

bc’s pi benchmark performs much worse when

using architecture specific optimization in 3.4.3,

and slightly worse in version 4.1.1. As none of

the other programs show this behaviour

chosen to leave out this program

comparison. This behaviour does show that

architecture optimization does not necessarily

improve performance, but can indeed degrade

performance on the targeted architecture.

8 shows the average values for both test systems.

Comparing the two compiler versions, it is clear

that gcc 4.1.1 shows better performance in this

area with only the -O2 -march option

-mtune=pentium3 showing a slightly better

result for version 3.4.3. The differences between

the -march and -mtune options for version 3.4.3

are small in most cases, only the

shows a relatively large difference. In most of

these cases, the -march is faster, but fo

4.1.1 one cannot conclude that one generates

faster code than the other. Only in the

does -march perform better than -

Using these architecture specific optimization

parameters limits the distribution of the

executables to the targeted executable, so the use

of these options adds complications

distributing a program in binary

would need to compile and distribute separately

for each architecture). Also, the effectiveness is

not always guaranteed, as can be seen with the bc

program, so for each program

performance should be measured

Architecture optimization performance

To judge the performance of the architecture specific optimization in gcc, I compared the benchmark

times of the executables compiled with -march or -mtune to those that were

but with the same optimization preset. These times were indexed in the same way

O2 was set to 100 and -O2 -march=pentium2 was indexed to this time. With

these indexed values, the average was calculated for each setting. This average combines the benchmarks

, bc, and whetstone to make the comparison between version 3.4.3 and

4.1.1 fair. Awk was excluded like before because it fails to compile in version 4.1.1

excluded because the program failed to execute properly when compiled with -march on the Pentium 3.

c was excluded for a different reason. As can

be seen in the indexed tables discussed before,

benchmark performs much worse when

ng architecture specific optimization in 3.4.3,

and slightly worse in version 4.1.1. As none of

behaviour, it was

chosen to leave out this program for this

does show that

s not necessarily

improve performance, but can indeed degrade

performance on the targeted architecture. Figure

shows the average values for both test systems.

Comparing the two compiler versions, it is clear

better performance in this

options and -O3

showing a slightly better

The differences between

mtune options for version 3.4.3

are small in most cases, only the -O2 preset

shows a relatively large difference. In most of

march is faster, but for version

one cannot conclude that one generates

faster code than the other. Only in the -O3 case

-mtune.

cture specific optimization

parameters limits the distribution of the

executables to the targeted executable, so the use

adds complications when

binary form (one

would need to compile and distribute separately

. Also, the effectiveness is

not always guaranteed, as can be seen with the bc

for each program the effect on

performance should be measured rather than applying these optimizations blindly.

93.46

92 93 94

-O2 -march=pentium2

-O2 -mtune=pentium2

-O3 -march=pentium2

-O3 -mtune=pentium2

-Os -march=pentium2

-Os -mtune=pentium2

-O2 -march=pentium3

-O2 -mtune=pentium3

-O3 -march=pentium3

-O3 -mtune=pentium3

-Os -march=pentium3

-Os -mtune=pentium3

Average performance indexed to same preset
without architecture parameters at 100

GCC architecture optimization performance
(average excl. awk and bc, lower is better)

Figure 8 - GCC architecture optimization average performance

25

To judge the performance of the architecture specific optimization in gcc, I compared the benchmark

mtune to those that were compiled without

These times were indexed in the same way

march=pentium2 was indexed to this time. With

. This average combines the benchmarks

to make the comparison between version 3.4.3 and

4.1.1 fair. Awk was excluded like before because it fails to compile in version 4.1.1, whetstone was

march on the Pentium 3.

95.11

97.56

94.52

94.70

98.27

98.47

95.45

97.52

95.42

94.86

98.49

99.06

95.30

94.78

93.46

94.60

96.26

95.92

95.59

95.56

94.23

95.11

96.82

96.24

94 95 96 97 98 99 100

Average performance indexed to same preset
without architecture parameters at 100

GCC architecture optimization performance
(average excl. awk and bc, lower is better)

gcc 3.4.3

gcc 4.1.1

GCC architecture optimization average performance

Executable segment sizes 26

7. Conclusion

When it comes to compilation speed, comparing ACK’s cc to gcc shows that cc compiles a great deal

faster for all programs. This difference is caused by two factors; cc’s faster compilation when looking at

the compiler’s user times, and the faster loading and initialization of cc. During development therefore, cc

has an advantage in reducing compilation time. In this paper other compiler features like code safety

checking and debugging facilities have not been taken into consideration however, so these features

should be taken into consideration as well when choosing a compiler for the development phase.

Comparing the gcc versions to each other, version 4.1.1 compiles considerably slower than version 3.4.3,

which can be attributed to the loading and initialization phase which takes almost 2 seconds for version

4.1.1 against 0.67 seconds for version 3.4.3.

Segment sizes are generally larger for gcc than for cc, especially when aggressive performance

optimization is used. Gcc’s size optimization preset -Os always generates smaller segment sizes compared

to the other presets, but does not always generate smaller segment sizes than cc. In general, when

segment sizes are an issue, using cc gives the best results, however for some programs gcc gives better

results, so it is useful to compare the two for the program being compiled.

Comparing cc to gcc in the area of execution performance, gcc clearly performs better than cc. For some

programs, gcc even outperforms cc when no optimization is used for gcc (-O0). On average, execution

times can be reduced to 77% and 85% using gcc -O3 on the Pentium 2 and Pentium 3 respectively. Some

programs like bc however are reduced to 26%, so the potential performance gain is quite large, depending

on program and its usage. Architecture specific optimization does not necessarily improve performance, it

can also degrade performance, and version 4.1.1 of gcc performs better in this area than version 3.4.3.

The results shown in this paper show that it could be useful to try to make use of the gcc compiler

toolchain to build at least some of the programs released for MINIX 3. Also, it is worth investigating if

the kernel can be built using gcc, and if so, what the differences are in kernel size and system

performance. Also, the comparison between cc and gcc could be broadened to look at compiler features

which were ignored for this paper, like debugging and code checking.

References 27

8. References

1. GNU GCC Team. Options That Control Optimization. GCC 3.4.3 Online Documentation. [Online]

http://gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc/Optimize-Options.html.

2. —. Options That Control Optimization. GCC 4.1.1 Online Documentation. [Online]

http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/Optimize-Options.html.

3. —. Intel 386 and AMD x86-64 Options. GCC 3.4.3 Online Documentation. [Online]

http://gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc/i386-and-x86_002d64-Options.html.

4. Wang, Thomas. Sorting Algorithm Examples. Thomas Wang's Home Page. [Online]

http://www.concentric.net/~ttwang/sort/sort.htm.

5. Painter, Rich. C Converted Whetstone Double Precision Benchmark. The Netlib. [Online] Painter

Engineering, Inc., March 22, 1998. http://www.netlib.org/benchmark/whetstone.c.

6. A synthetic benchmark. Curnow, H J and Wichmann, B A. 1, 1976, Computer Journal, Vol. 19, pp. 43-
49. Available from http://freespace.virgin.net/roy.longbottom/whetstone.pdf.

7. Bal, Henri E. The Design and Implementation of the EM Global Optimizer. Vrije Universiteit. Amsterdam :

s.n., 1985. Available from http://tack.sourceforge.net/olddocs/ego.html or

http://tack.sourceforge.net/olddocs/ego.pdf.

8. Weicker, Reinhold. Dhrystone: A Synthetic Systems Programming Benchmark. Communications of the

ACM (CACM). October 1984, Vol. 27, 10, pp. 1013-1030.

9. Beszédes, Á, Gergely, T, Gyimóthy, T, Lóki, G, Vidács, L. Optimizing for Space: Measurements and

Possibilities for Improvement. Research Group on Artificial Intelligence, University of Szeged. Szeged,

Hungary : s.n., 2003. Available from http://www.inf.u-szeged.hu/gcc-arm/paper/summit2003-paper.ps.

