

Contents

Overview.

Proposed System.

Why do Operating Systems Crash?
What is OS Reliability ?
Operating System Design.
Proposed Design Principles.
MINIX 3 Our Reliable UNIX.
Architecture of MINIX 3.

MINIX 3 Reliability Features.
MINIX 3 Performance.

Conlusion.

O 0 0 0 0 00O OO O 0 O

References.

Overview

O perating system are suppose to function
flawlessly but OSes 1like MS Windows ,
Linux,Mac etc fail to do so.

O hese OS have majority of their code in
Kernel,and any bug can trash entire
system.They violate Principle of Least
Authorization.

Proposed Sysitem

O t dive into a UNIX-like system called

, with entire operating system

running as tightly restricted,
independent ,user mode processes.

O his structure with mechanism for
transparent recovery from crashes results
in highly reliable, multiserver OS which
looks and feels 1like most successful
UNIX.

Why do Operating System Crash ?

A fatal exception BE has occurred at BH2B:CHB11E36 in UXD UMM(B1) +
HBB1BE36. The current application will be terminated.

Press any key to terminate the current application.
Press CTRL+ALT+DEL again to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue _

Why do Operating System Crash ?

Reason for Operating System Crashes can
be track backed to two basic design
f1aw:

O S core modules shares too much
privileges.

O '‘ack of fault isolation among OS core
modules.

Other factors->

Other factors

O ost users allow third party drivers to
be loaded into the OS core.

O evice drivers are written by programmers
working for the peripheral manufacturer.

© ven in an open-source effort,it is not
necessarily coded experienced volunteer.

0O ‘oSt «errors are due to programming
bugs ,studies have shown there are 1-
16bugs per 1000 lines of code.

(==) Using config file: “setcs/X1l/xorg.conf”
(IT) Module "ddc" already built-in

waiting for X server to shut down xterm: fatal I0 error 32 (Broken pipe) or Kil

IClient on X server ":0.0"
FreeFontPath: FPE "susrslocalslibsX11/fonts/miscs” refcount is 2, should be 1; f

b What 1s OS Reliability ?

xauth: (argv):1: bad display name ":0" in "remove" command
xauth: (argv):1: bad display name ":0" in "remove" command
kill -5EGU 1

f Sep b 14:41:46 init: fatal signal: Segmentation fault

Message from syslogdl at Sat Sep 6 14:41:46 2008 ...
init: fatal signal: Segmentation fault
init died (signal 0, exit 11)
panic: Going nowhere without my init!?
cpuid = 0
Uptime: 6m35s
Physical memory: 5Z MB
Dumping 34 MB: 19 3
Dump complete
Eutumatic reboot in 15 seconds - press a key on the console to abort

Operating System Design

We aim at reliability,lets look at how

the choice of OS kernel design affect
reliability.

Two typical kernel design options are:

© 'onolithic Kernel

© i1cro Kernel

Monolithic Kernel

Monolithic Kernel
based Operating System

Application

kernel
mode

kernel
mode

Hardware

Problem wath Monolithic Kernel

o

o proper isolation of faults.

o

11 codes runs at highest privilege
levels.

uge amount of code imply many bugs.
ntrusted,third party code in Kernel.
ard to maintain due to complexity.

ernel is assumed to be perfect code.

O 0 0 0 O

undamental desing requires 3°° party
driver to be inserted into the kernel.

MicroKernel Design

Microkernel
based Operating System

Application

Application
IPC

kernel
mode

Hardware

kernel
mode

Why a Microkernel Design?

O t consist of bare mechanism but no
policy.

© ernel jJust provides mechanism of
interrupt handler ,scheduler,MMU,IPC.

O td OS functionality like device
drivers,file system,network server,high
level Memoxry management runs as
separate process 1n a private address
space.

0 unctionality’ communicates among them
with kernel IPC than shared virtual
address space.

Microkernel 1is Reliable

n userspace operating system are
restricted to what they can do.

ernel exports kernel calls to only
those OS task that are authorized to
call.

evice drivers have no privileges to
perform I/0 directly but can request
kernel.

11 IPC 1is done by exchanging small
fixed size messages,kernel checks the
call being requested to see if its
authorized.

STmplIcaty

O e keep our system as simple as possible
so that is easy to understand.

O his design avoids problems of resource
exhaustion.

O f needed we compromise performance for
reliability.
© n kernel we statically declare all the

datastructres even though it waste
memory, it is much simpler to manage.

O e deliberately not implement multi-
threading,so that we can avoid race-
conditions,may with cost of performance.

o

o

Modularity

e split our system into collection of
independent modules.

his builds a firewall across modules so
that errors can't propagate to other
modules.

e have reduced interdependencies among
modules so that failure of one doesn't
affect others.

:File System 1is depends on device
drivers but its designed in such a way
that its prepared to handle driver
failure.

Ileast Authorization

o fault in powerful module can bring
down entire system,so we reduce the
privileges of all the process including
servers and drivers.

O ernel maintains a bit map that governs
who can do what.

O or eg:The allowed kernel call map and
list of permitted message desti-
nations,this information is 1in each
process table entry and initialized at
boot time set by sys admin.

Fault Tolerance

O e have explicitly designed our system to
withstnad failures.

© 11 server and drivers are monitered by
special server called reincarnation
server.

O f system process unexpectedly exits,this
is found by RS and process is restarted.

O tatus of each system process 1is period-
ically checked to see if its still work-
ing,if not malfuctioning server/driver is
killed and restarted.

O ault is detected,rectified on the fly.

MINIX 3 our Reliable UNIX

o

Andrew S. Tanebaum and R&D
students.

UNIX Clone.

POSIX Compliant.
Microkernel based.
Full Multiuser.
Multiprograming.
Fault tolerant.

Open Sourced GPL/BSD.

Single chip/low powered
devices.

Embbeded Systems.
FEducation.

O 0 0 00O O O O

o

o

Architecture of MINIX 3

User
mode

~=_}

Kernel
mode

Separate processes

2 AN

Shell

)

File Process| [Network| [Reinc. Data
Server | Manager | Server) | Server | | Store

SATA| [Audio} (3COM . SCSI | (Printer
Driver!| |Driver! { Driver Driver| | Driver

)
p—
-
; KD
__"'.'
—
)
Lo
b

E IRQ, MMU, IPC, etc.

e o m— w—

-« Apps

-+ Sarvers

-+ [Jrivers

-+ Kornegl

The Kernel

O he kernel consist of under 4000 lines of
execu-table code (LoC),which makes easy
for us to understand and use verification
tools.

O he kernel is responsible for low 1level
operations such as programming the
CPU,MMU, interrupt handling and IPC.

O ernel contains two tasks namely SYS and
CLOCK to support the usermode part of the
system.

The Kernel (continued)

O ernel maintains 1list and bitmaps to
restrict the power of all system
process,like IPC destination, kernel
calls allowed,I/O ports,IRQ lines,memory
regions.

O olicies are set by the RS and enforced
by kernel at runtime.

Kernel IPC

O ernel IPC eliminates the need for dynamic
allocation of resources.

© he standard request-reply 1s rendez-
vous,1f the destinations is not waiting
IPC REQUEST blocks the sender until IPC
REPLY has been sent,receiver is blocked on
IPC SELECT,when no IPC is available.

O essages are never buffered in kernel
,but copied from sender to receiver

speeding up the IPC eliminating buffer
overruns.

Kernel IPC (continued)

O or special events IPC NOTIFY primitive
can be used to send non blocking
notification messages.

© int notify(endpoint t dest);
© int receive(endpoint t src, message *m ptr);

© int send(endpoint t dest, message *m ptr);

System Task (SY¥S)-kernel space

© t 1s the interface to the kernel for
all usermode servers and drivers that
requried lowlevel kernel operation.

© 11 kernel calls in system library are
transformed into request message sent to
SYS,which handles i1f caller authorized.

© ernel calls handled by SYS can be
grouped into process ,MEMOLY and
interrupt management ,device I/0 and
clock services.

System call

Purpose

PROCESS MANAGEMENT

SYS_EXEC
SYS_EXIT
SYS_FORK
SYS_KILL
SYS_NEWMAP
SYS_XIT
SYS_SIGCTL
SYS_TRACE

Execute a process (initialize process)
Exit system service (clean up process)
Fork a process (create new process)
Kill a process (send a signal)

Install new or updated memory map
Exit a user process (clean up process)
Signal handling (get and process it)
Tracing (control process execution)

COPYING DATA

SYS_COPY
SYS_PHYSCOPY
SYSVCOPY
SYS_VIRCOPY

General copying (virtual and physical)
Physical copving (arbitrary memory)

General copying (vector with requests)
Virtual copying (local, remote, BIOS)

DEVICE 1/0

SYS_DEVIO
SYS_SDEVIO
SYS_VDEVIO

Read or write a single device register
Input or output an entire data butfer
Process a vector with multiple requests

Clock Task (CLOCK)-kernel space

O t 1is responsible for accounting CPU
usage, scheduling when quantum expires,

managing watchdog timers and interacting
with hardware clock.

O ‘lock registers an interrupt handler
ythat is run on every clock tick.

© SR for clock only increments the CPU
usage and decrements the scheduling
quantum.

O 'YS provides interface from CLOCK to
servers and drivers.

User Space SEeLVEeLrS

© he size of the servers approximately
range from 1000-3000 LoC /server,which
helps us in understanding.

O his extends the UNIX philosophy of
limited responsibility and power to OS
desing level.

0 e here implement POSIX comformant,multi
server operating system.

O ervers and and drivers cooperate using
kernel IPC to provide the functionality
of ordinary UNIX.

User Space servers (continued)

O PM (Process manager)
O MM (Memory manger)
O FS (File System)

O DS (Data Store)

O RS (Reincarnation Server)

Process) Manager

© ogether with FS,PM implements the POSIX
interface.

O M 1is responsible for process mana-
ment,such as creating and removing
processes,assig ning process ID and
priorities and flow of execution,also
responsible for POSIX signaling.

O M implements all the process management
policies, for kernel all process are the
same,all it does 1is to schedule the
highest priority ready process.

Memorys Manager

© o allowing porting,we make use of
hardware-independent segmented memory.

© ach process has text that can be shared
with process that execute the same
program.

O ystem process can be granded to acess
aditional memory like video memory.

O ext segments of all process are RDONLY.

O tack and DERF-] segments are not
executable.

© M maintains the 1l1list of free memory
region.

File Server

O £t 1s an ordinary file server that
handles the POSIX calls like
read() ,open() ,write() , etc.

O i1le system blocks are buffered into FS's
buffer cache.

O ‘aches are periodically written to disk.

O ‘urrent MINIX 3 support only one File
system,VFS (Virtual File system),is on
the way,that supports multiple file
systems.

Data Store

© mall data base server with publish
subscribe functionality.

O ystem process use DS to store data
privately.

o restarting system server can use DS
to restore its state back.

© £t 1is glue between OS components
producer can publish data with an
ID,and consumer can subscribe to events
by producer with the ID.

o

o

Reincarnation Server

t is the central component responsible
for managing all OS server and drivers.

here 1is policy script associated with
each driver and servers.

utility called service.

RS adopts all process in boot image as
child.

S does a periodic check on driver/server

tatus request from drivers/server are
nonblocking.

S replace malfunctioning task with fresh
one.

Device drivers

© n MINIX 3 we have ATA,SATA, floppy and
RAM disk ,keyboard,display drivers etc.

© ach driver in MINIX 3 runs as a user
process ,preventing the fault from
spreading.

O ot all bugs can be cured by restarting
the failed drivers,but certain bugs
only requires a

restart.

© ell more can be set in the policy
script,to be set up in the event of
driver crash.

MINIX 3 Reliability Features

Reducing the Number of kernel bugs.
Reducing the bug power.

Recovering from failures.

Limited Buffer Overruns.

Ensuring Reliable IPC

Restricting IPC

Avoiding Deadlocks.

Restricting Driver functionality.
Denying Access to I/O ports.
Parameter Checking

Catching bad pointers.

O 0 0 00O OO OO O 0 O

Taming Infinite Loop.

Reducing the Number of kernel bugs

© e have tiny kernel,with almost 4000LoC
which is well understood,when compared
to 2.5 million LoC of Linux.

O ore chances of finding bugs.

O ore code mean more bugs,l l6bugs per
1000l1lines.

Reducing the Bug power

© hen bug is triggered the effect would
be 1less devastating by converting it
into usermode bug than kernel mode bug.

o :User mode sound driver that tries to
dereference a bad pointer is killed by
RS server,causing sound to stop while
rest of the system running.

o similar kernel mode sound driver, the
dereferencing is allowed which may over
write the stack return address,causing
entire system to crash.

Recovering From failures

O ervers and drivers are forked by
system process called reincarnation
server.

© f at all server/driver terminates this
is notified to RS,as it is the parent.

O S polls the children periodically.

O onolithic systems doesn't have method
to detect faulty drivers on fly.

Limiting Buffer Overruns

O uffer overflow is heavily exploited by
viruses and worms.

O ‘ur system provides a prevention for
this than cure.

© ince our kernel 1is static alloc-
ation,problem doesn't affect kernel.

O ‘ur system only allows execution of code
in RDONLY text segment.

O ‘ur stack and datasegment is not
executable.

O orst case is overwriting return address
in stack.

Ensuring Reliable IPC

O ‘ur synchronous message passing
mechanism 1i1s redezvous which enables
buffering and buffer management.

O f receiver is not waiting SEND blocks
the caller,same with receiver.

© 'synchronous method is NOTIFY.

O e make use of short fixed sized
messages,thus buffer management is
easy.

Restricting IPC

O PC must be tightly controlled,our re-
dezvous mechanism can be used hang the
system with deadlock.

© PCI primitive called SENDREC,which
combines send and receive 1n and
single call.It blocks the caller until
reply is received.

O ENDREC 1is the only method that
ordinary process can use.

O ernel maintains a bit map |Dper
process.

Avoiding Deadlocks

O PC 1is synchronous SEND and RECEIVE
done simultaneously deadlock.

O ser process only SENDREC() to servers
which provides POSIX service.

O e make wuse of NOTIFY() to send
message from kernel space to userspace

which is non blocking.

O otification is stored in destination
process table entry until RECEIVE.

Restricting Driver Functionality

O ernel exports limited functions.

© ernel maintains a bit map of calls a
driver can call.

O ome drivers need only read() call,and
would never need a write(),allowing
write() to these drivers is a risk.

© n monolithic kernel any one is allow-

ed to call any procedure,even write
into other ports.

Denying Acess to IO ports

O or each driver kernel maintains list
of ports,the driver is privileged to
use.

O ead and write access 1s protected
separately,process with rdonly try to
do write is returned an error.

O ‘nly kernel 1is allowed to do IO
operations.

O e do compromise reliability over
performance.

Parameter Checking

O ell a complete parameter checking is
not possible.

© ut kernel can block when a driver
tries to write a block of data using
physical addressing.

O ut with a virtual addressing kernel
can't tell if its a valid address,but
atleast it can check if the address is
valid within users address space.

© onolithic any thing is possible.

Catching Bad Pointers

0 /C++ programs suffer from great
pointer errors.

O ereferencing a bad pointer 1leads to
segmentation fault.

O n our design a bad pointer issue done
by a driver / server would be killed
and core would be dumped.

® hus' RS restarts the Killed driver /[
Servers.

Taming Infinite Loop

© hen a driver is stuck in an infinite
loop it consumes too much CPU time.

© cheduler notice this and reduce the
priority until it becomes idle.

O ince driver would stop responding to
RS,RS reads the policy script and
either restarts it or do as in policy
script.

© n monolithic entire system hangs.

MINIX 3 Performance

O easuring the performance is bit tricky.

O unning benchmarks on MINIX 3 other clones
like BSD or Linux would have helped.

O ut these kernels have been compiled with
different compilers and follow different
algorithms for memory / filesystem etc.

© ‘o benchmarks were conducted with two
systems that differ only in one parameter.

MINIX 3 Performance (continued)

O e compared the benchmarks run on MINIX 2

which is a hybrid microkernel with drivers
in the kernel.

© 11 the test were conducted in 2.2GHz.

System Call performance

Call | MiNix2 | MiNX3 | A | Ratio
3.048 | 3315
81,207
80.165 | 86.832 .08

12465 | 13.465 1.08
10.499 | 12.399 .18
43.365 4.533 12
_Average | [

:System call times for kernel call vs user
mode drivers ,unit of us.

Application test Results

Sed | 17T 88| 11| 106
13
56| 1

7.7 15.8

:Run times in seconds for various test programs
first two test where run repeatedly in a loop while
others once to exclude the effect of cache.

Summery: o PErformance

O eading and writing are 8% slower in
MINIX 3 due to extra two messages and
two context switches for user mode
drivers.

O he getpid() call a simple call from
user process to process manager takes
180 ns more in MINIX 3 than MINIX 2.

O wverage performance hit in application
testing were 6%.

© or reliability we pay a performace loss
of 5-10%.We consider it a price paying.

Conclusion

To achieve reliability design was guided by
simplicity,modularity,POLA and fault tolerance.An
understandable kernel means fewer kernel bugs,most
part of operating system works as a isolated
process 1in userspace.Servers and drivers are
monitored by a special server called RS, for the
reduction of operating system crashes we may 5-10%
performance loss.Drivers and other components are
not rendered bug free but the effect bugs is
reduced.

Concluding,we have seen operating system
reliablitly can be improved with careful desigin
even at cost of performance.

References

1] T.J. Ostrand and E.J. Weyuker. The Distribution of Faults in a Large}
Industrial Software System. In Proc.of the 2002 ACM SIGSOFT Int’l Symp. onj}
Software Testing and Analysis, Pages 55—64,86-96. ACM, 2002.

[2] V. Basili and B. Perricone. Software Errors and Complexity: An
Empirical Investigation.Commun. of the ACM, 21(1):42-52, Jan. 1984.

[3] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An Empirical
Study of Operating System Errors. InProc. 18th ACM Symp. on Oper. Syst.
Prin., pages 73-88, 2001.

[4] A. Bricker, M. Gien, M. Guillemont, J. Lipkis, D. Orr, and M.
Rozier. A New Look at Microkernel-Based UNIX Operating Systems: Lessons in]
Performance and Compatibility. In Proc. EurOpen Spring 1991 Conf., pages '
13—32, May 1991.

[5] D. Cheriton. The V Kernel: A Software Base for Distributed Systems. |
IEEE Software, 1(2):19—42, Apr 1984. 6th Symp. o
Syst. Design and Impl., pages 17—30, Dec. 2004.

[6] Herder, J.N., Bos, H., Tanenbaum, A.S.: A Lightwei Method for
Building Reliable Operating Systems Despite Unreliable DeviCe Drivers. In:
Technical Report IR-CS-018[www.cs.vu.nl/»jnherder/ir-cs- 018.pdf], Vrije
Universiteit (2006) .

[7] Jorrit Ni.. Herder, Herber Bos,Ben Gras,Philip Homburg and Andrew S.
Tanenbaum: MINIX 3| A highly reliable,Self Repa ring Operating System ,Vrije
University.

[8] Jorrit N. Herder, Herber Bos,Ben Gras,Philip Homburg and Andrew S.
Tanenbaum.Reorganizing UNIX for Reliability,Computer Science Dept.,Vrije
University Amsterdam

| [191] Andrew S. Tanenbaum,Albert S. Woodhull, The MINIX book,Operating
i System Design and Implimentation Third edition

._,_. _
T

Computers are like air conditioners,
they stop working once you

Open

:Ill.l.i"
e IS

A fatal exception BE has occurred at BBZ2B8:CHB11E36 in UXD UMHM(B1) +
BBB1BE36. The current application will be terminated.

Press any key to terminate the current application.
Press CTRL+ALT+DEL again to restart your computer. You will

lose any unsaved information in all applications.

Press any key to continue _

- Thank you ;-)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Business 1 Template
	Example Bullet Point Slide
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

